LeetCode算法小抄--归并排序详解及应用

简介: LeetCode算法小抄--归并排序详解及应用

归并排序详解及应用

归并排序的代码框架

// 定义:排序 nums[lo..hi]
void sort(int[] nums, int lo, int hi) {
    if (lo == hi) {
        return;
    }
    int mid = (lo + hi) / 2;
    // 利用定义,排序 nums[lo..mid]
    sort(nums, lo, mid);
    // 利用定义,排序 nums[mid+1..hi]
    sort(nums, mid + 1, hi);
    /****** 后序位置 ******/
    // 此时两部分子数组已经被排好序
    // 合并两个有序数组,使 nums[lo..hi] 有序
    merge(nums, lo, mid, hi);
    /*********************/
}
// 将有序数组 nums[lo..mid] 和有序数组 nums[mid+1..hi]
// 合并为有序数组 nums[lo..hi]
void merge(int[] nums, int lo, int mid, int hi);

总结归并排序:先把左半边数组排好序,再把右半边数组排好序,然后把两半数组合并

类似于二叉树的后序遍历:先递归左子树,再递归右子树,然后写后序位置

归并排序的过程可以在逻辑上抽象成一棵二叉树,树上的每个节点的值可以认为是 nums[lo..hi],叶子节点的值就是数组中的单个元素

daed1a65065941a5a3aa596769f69504.png


然后,在每个节点的后序位置(左右子节点已经被排好序)的时候执行 merge 函数,合并两个子节点上的子数组

class Merge {
    // 用于辅助合并有序数组
    private static int[] temp;
    public static void sort(int[] nums) {
        // 先给辅助数组开辟内存空间
        temp = new int[nums.length];
        // 排序整个数组(原地修改)
        sort(nums, 0, nums.length - 1);
    }
    // 定义:将子数组 nums[lo..hi] 进行排序
    private static void sort(int[] nums, int lo, int hi) {
        if (lo == hi) {
            // 单个元素不用排序
            return;
        }
        // 这样写是为了防止溢出,效果等同于 (hi + lo) / 2
        int mid = lo + (hi - lo) / 2;
        // 先对左半部分数组 nums[lo..mid] 排序
        sort(nums, lo, mid);
        // 再对右半部分数组 nums[mid+1..hi] 排序
        sort(nums, mid + 1, hi);
        // 将两部分有序数组合并成一个有序数组
        merge(nums, lo, mid, hi);
    }
    // 将 nums[lo..mid] 和 nums[mid+1..hi] 这两个有序数组合并成一个有序数组
    private static void merge(int[] nums, int lo, int mid, int hi) {
        // 先把 nums[lo..hi] 复制到辅助数组中
        // 以便合并后的结果能够直接存入 nums
        for (int i = lo; i <= hi; i++) {
            temp[i] = nums[i];
        }
        // 数组双指针技巧,合并两个有序数组
        int i = lo, j = mid + 1;
        for (int p = lo; p <= hi; p++) {
            if (i == mid + 1) {
                // 左半边数组已全部被合并
                nums[p] = temp[j++];
            } else if (j == hi + 1) {
                // 右半边数组已全部被合并
                nums[p] = temp[i++];
            } else if (temp[i] > temp[j]) {
                nums[p] = temp[j++];
            } else {
                nums[p] = temp[i++];
            }
        }
    }
}

ea9ef1c633ec42629a4d31b1f3222d1f.png

注意我们不是在 merge 函数执行的时候 new 辅助数组,而是提前把 temp 辅助数组 new 出来了,这样就避免了在递归中频繁分配和释放内存可能产生的性能问题

归并排序的时间复杂度, O(NlogN)

递归算法的复杂度计算,就是子问题个数 x 解决一个子问题的复杂度

执行的次数是二叉树节点的个数,每次执行的复杂度就是每个节点代表的子数组的长度,所以总的时间复杂度就是整棵树中「数组元素」的个数

所以从整体上看,这个二叉树的高度是 logN,其中每一层的元素个数就是原数组的长度 N,所以总的时间复杂度就是 O(NlogN)

912. 排序数组

给你一个整数数组 nums,请你将该数组升序排列。

// class Solution {
//     public int[] sortArray(int[] nums) {
//         // API选手(手动狗头)
//         Arrays.sort(nums);
//         return nums;
//     }
// }
// 归并排序
class Solution {
    public int[] sortArray(int[] nums) {
        Merge.sort(nums);
        return nums;
    }
}
class Merge {
    // 用于辅助合并有序数组
    private static int[] temp;
    public static void sort(int[] nums) {
        // 先给辅助数组开辟内存空间
        temp = new int[nums.length];
        // 排序整个数组(原地修改)
        sort(nums, 0, nums.length - 1);
    }
    // 定义:将子数组 nums[lo..hi] 进行排序
    private static void sort(int[] nums, int lo, int hi) {
        if (lo == hi) {
            // 单个元素不用排序
            return;
        }
        // 这样写是为了防止溢出,效果等同于 (hi + lo) / 2
        int mid = lo + (hi - lo) / 2;
        // 先对左半部分数组 nums[lo..mid] 排序
        sort(nums, lo, mid);
        // 再对右半部分数组 nums[mid+1..hi] 排序
        sort(nums, mid + 1, hi);
        // 将两部分有序数组合并成一个有序数组
        merge(nums, lo, mid, hi);
    }
    // 将 nums[lo..mid] 和 nums[mid+1..hi] 这两个有序数组合并成一个有序数组
    private static void merge(int[] nums, int lo, int mid, int hi) {
        // 先把 nums[lo..hi] 复制到辅助数组中
        // 以便合并后的结果能够直接存入 nums
        for (int i = lo; i <= hi; i++) {
            temp[i] = nums[i];
        }
        // 数组双指针技巧,合并两个有序数组
        int i = lo, j = mid + 1;
        for (int p = lo; p <= hi; p++) {
            if (i == mid + 1) {
                // 左半边数组已全部被合并
                nums[p] = temp[j++];
            } else if (j == hi + 1) {
                // 右半边数组已全部被合并
                nums[p] = temp[i++];
            } else if (temp[i] > temp[j]) {
                nums[p] = temp[j++];
            } else {
                nums[p] = temp[i++];
            }
        }
    }
}

315. 计算右侧小于当前元素的个数[hard]–华为笔试

给你一个整数数组 nums ,按要求返回一个新数组 counts 。数组 counts 有该性质: counts[i] 的值是 nums[i] 右侧小于 nums[i] 的元素的数量。

class Solution {
    public List<Integer> countSmaller(int[] nums) {
        // 暴力破解
        // 超出时间限制
        List<Integer> counts = new LinkedList<>();
        for(int i = 0; i < nums.length; i++){
            int count = 0;
            for(int j = i + 1; j < nums.length; j++){
                if(nums[j] < nums[i]) count++;
            }
            counts.add(count);
        }
        return counts;
    }
}

考虑归并排序

和归并排序什么关系呢,主要在 merge 函数,我们在使用 merge 函数合并两个有序数组的时候,其实是可以知道一个元素 nums[i] 后边有多少个元素比 nums[i] 小的

18870f504cc348188a80b6e2aac0fab6.png


这时候我们应该把 temp[i] 放到 nums[p] 上,因为 temp[i] < temp[j]

但就在这个场景下,我们还可以知道一个信息:5 后面比 5 小的元素个数就是 左闭右开区间 [mid + 1, j) 中的元素个数,即 2 和 4 这两个元素:


27d2f1b6813e4102a6950697a256f7f9.png

换句话说,在对 nums[lo..hi] 合并的过程中,每当执行 nums[p] = temp[i] 时,就可以确定 temp[i] 这个元素后面比它小的元素个数为 j - mid - 1

class Solution {
    private class Pair {
        int val, id;
        Pair(int val, int id) {
            // 记录数组的元素值
            this.val = val;
            // 记录元素在数组中的原始索引
            this.id = id;
        }
    }
    // 归并排序所用的辅助数组
    private Pair[] temp;
    // 记录每个元素后面比自己小的元素个数
    private int[] count;
    public List<Integer> countSmaller(int[] nums) {
        int n = nums.length;
        count = new int[n];
        temp = new Pair[n];   
        Pair[] arr = new Pair[n];
        // 记录元素原始的索引位置,以便在 count 数组中更新结果
        for (int i = 0; i < n; i++)
            arr[i] = new Pair(nums[i], i);
        // 执行归并排序,本题结果被记录在 count 数组中
        sort(arr, 0, n - 1);
        List<Integer> res = new LinkedList<>();
        for (int c : count) res.add(c);
        return res;             
    }
    // 归并排序
    private void sort(Pair[] arr, int lo, int hi) {
        if (lo == hi) return;
        int mid = lo + (hi - lo) / 2;
        sort(arr, lo, mid);
        sort(arr, mid + 1, hi);
        merge(arr, lo, mid, hi);
    }
    // 合并两个有序数组
    private void merge(Pair[] arr, int lo, int mid, int hi) {
        for (int i = lo; i <= hi; i++) {
            temp[i] = arr[i];
        }
        int i = lo, j = mid + 1;
        for (int p = lo; p <= hi; p++) {
            if (i == mid + 1) { // 左边数组已经排序好了
                arr[p] = temp[j++];
            } else if (j == hi + 1) { // 右边数组已经排序好了
                arr[p] = temp[i++];
                // 更新 count 数组
                count[arr[p].id] += j - mid - 1;
            } else if (temp[i].val > temp[j].val) {
                arr[p] = temp[j++];
            } else {
                arr[p] = temp[i++];
                // 更新 count 数组
                count[arr[p].id] += j - mid - 1;
            }
        }
    }    
}

因为在排序过程中,每个元素的索引位置会不断改变,所以我们用一个 Pair 类封装每个元素及其在原始数组 nums 中的索引,以便 count 数组记录每个元素之后小于它的元素个数。

493. 翻转对[hard]

给定一个数组 nums ,如果 i < jnums[i] > 2*nums[j] 我们就将 (i, j) 称作一个重要翻转对

你需要返回给定数组中的重要翻转对的数量。

这道题目和题目是一个意思,而且和上一道题非常类似,只不过上一题求的是 nums[i] > nums[j],这里求的是 nums[i] > 2*nums[j] 罢了

解题的思路当然还是要在 merge 函数中做点手脚,当 nums[lo..mid] 和 nums[mid+1..hi] 两个子数组完成排序后,对于 nums[lo..mid] 中的每个元素 nums[i],去 nums[mid+1..hi] 中寻找符合条件的 nums[j] 就行了

// 记录「翻转对」的个数
int count = 0;
// 将 nums[lo..mid] 和 nums[mid+1..hi] 这两个有序数组合并成一个有序数组
private void merge(int[] nums, int lo, int mid, int hi) {
    for (int i = lo; i <= hi; i++) {
        temp[i] = nums[i];
    }
    // 在合并有序数组之前,加点私货
    for (int i = lo; i <= mid; i++) {
        // 对于左半边的每个 nums[i],都去右半边寻找符合条件的元素
        for (int j = mid + 1; j <= hi; j++) {
            // nums 中的元素可能较大,乘 2 可能溢出,所以转化成 long
            if ((long)nums[i] > (long)nums[j] * 2) {
                count++;
            }
        }
    }
    // 数组双指针技巧,合并两个有序数组
    int i = lo, j = mid + 1;
    for (int p = lo; p <= hi; p++) {
        if (i == mid + 1) {
            nums[p] = temp[j++];
        } else if (j == hi + 1) {
            nums[p] = temp[i++];
        } else if (temp[i] > temp[j]) {
            nums[p] = temp[j++];
        } else {
            nums[p] = temp[i++];
        }
    }
}

不过呢,这段代码提交会超时,毕竟额外添加了一个嵌套 for 循环。怎么进行优化呢,注意子数组 nums[lo..mid] 是排好序的,也就是 nums[i] <= nums[i+1]

所以,对于 nums[i], lo <= i <= mid,我们在找到的符合 nums[i] > 2*nums[j]nums[j], mid+1 <= j <= hi,也必然也符合 nums[i+1] > 2*nums[j]

换句话说,我们不用每次都傻乎乎地去遍历整个 nums[mid+1..hi],只要维护一个开区间边界 end,维护 nums[mid+1..end-1] 是符合条件的元素即可

class Solution {
    public int reversePairs(int[] nums) {
        // 执行归并排序
        sort(nums);
        return count;
    }
    private int[] temp;
    public void sort(int[] nums) {
        temp = new int[nums.length];
        sort(nums, 0, nums.length - 1);
    }  
    // 归并排序
    private void sort(int[] arr, int lo, int hi) {
        if (lo == hi) return;
        int mid = lo + (hi - lo) / 2;
        sort(arr, lo, mid);
        sort(arr, mid + 1, hi);
        merge(arr, lo, mid, hi);
    }
    // 记录「翻转对」的个数
    private int count = 0;
    private void merge(int[] nums, int lo, int mid, int hi) {
        for (int i = lo; i <= hi; i++) {
            temp[i] = nums[i];
        }
        // 进行效率优化,维护左闭右开区间 [mid+1, end) 中的元素乘 2 小于 nums[i]
        // 为什么 end 是开区间?因为这样的话可以保证初始区间 [mid+1, mid+1) 是一个空区间
        int end = mid + 1;
        for (int i = lo; i <= mid; i++) {
            // nums 中的元素可能较大,乘 2 可能溢出,所以转化成 long
            while (end <= hi && (long)nums[i] > (long)nums[end] * 2) {
                end++;
            }
            count += end - (mid + 1);
        }
        // 数组双指针技巧,合并两个有序数组
        int i = lo, j = mid + 1;
        for (int p = lo; p <= hi; p++) {
            if (i == mid + 1) {
                nums[p] = temp[j++];
            } else if (j == hi + 1) {
                nums[p] = temp[i++];
            } else if (temp[i] > temp[j]) {
                nums[p] = temp[j++];
            } else {
                nums[p] = temp[i++];
            }
        }
    }          
}

327. 区间和的个数[hard]

给你一个整数数组 nums 以及两个整数 lowerupper 。求数组中,值位于范围 [lower, upper] (包含 lowerupper)之内的 区间和的个数

区间和S(i, j) 表示在 nums 中,位置从 ij 的元素之和,包含 ij (ij)。

简单说,题目让你计算元素和落在 [lower, upper] 中的所有子数组的个数。

首先,解决这道题需要快速计算子数组的和,创建一个前缀和数组 preSum 来辅助我们迅速计算区间和。

preSum 中的两个元素之差其实就是区间和。

class Solution {
    private int lower, upper;
    public int countRangeSum(int[] nums, int lower, int upper) {
    this.lower = lower;
        this.upper = upper;
        // 构建前缀和数组,注意 int 可能溢出,用 long 存储
        long[] preSum = new long[nums.length + 1];
        for (int i = 0; i < nums.length; i++) {
            preSum[i + 1] = (long)nums[i] + preSum[i];
        }
        // 对前缀和数组进行归并排序
        sort(preSum);
        return count;
    }
    private long[] temp;
    public void sort(long[] nums) {
        temp = new long[nums.length];
        sort(nums, 0, nums.length - 1);
    }
    private void sort(long[] nums, int lo, int hi) {
        if (lo == hi) {
            return;
        }
        int mid = lo + (hi - lo) / 2;
        sort(nums, lo, mid);
        sort(nums, mid + 1, hi);
        merge(nums, lo, mid, hi);
    }
    private int count = 0;
    private void merge(long[] nums, int lo, int mid, int hi) {
        for (int i = lo; i <= hi; i++) {
            temp[i] = nums[i];
        }
        // 在合并有序数组之前加点私货(这段代码会超时)
        // for (int i = lo; i <= mid; i++) {
        //     for (int j = mid + 1; j <= hi; k++) {
        //         // 寻找符合条件的 nums[j]
        //         long delta = nums[j] - nums[i];
        //         if (delta <= upper && delta >= lower) {
        //             count++;
        //         }
        //     }
        // }
        // 进行效率优化
        // 维护左闭右开区间 [start, end) 中的元素和 nums[i] 的差在 [lower, upper] 中
        int start = mid + 1, end = mid + 1;
        for (int i = lo; i <= mid; i++) {
            // 如果 nums[i] 对应的区间是 [start, end),
            // 那么 nums[i+1] 对应的区间一定会整体右移,类似滑动窗口
            while (start <= hi && nums[start] - nums[i] < lower) {
                start++;
            }
            while (end <= hi && nums[end] - nums[i] <= upper) {
                end++;
            }
            count += end - start;
        }
        // 数组双指针技巧,合并两个有序数组
        int i = lo, j = mid + 1;
        for (int p = lo; p <= hi; p++) {
            if (i == mid + 1) {
                nums[p] = temp[j++];
            } else if (j == hi + 1) {
                nums[p] = temp[i++];
            } else if (temp[i] > temp[j]) {
                nums[p] = temp[j++];
            } else {
                nums[p] = temp[i++];
            }
        }
    }
}

我们依然在 merge 函数合并有序数组之前加了一些逻辑,这个效率优化有点类似维护一个滑动窗口,让窗口中的元素和 nums[i] 的差落在 [lower, upper] 中。

所有递归的算法,本质上都是在遍历一棵(递归)树,然后在节点(前中后序位置)上执行代码。你要写递归算法,本质上就是要告诉每个节点需要做什么

–end–

相关文章
|
17天前
|
存储 监控 算法
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
61 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用
|
17天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
52 0
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
56 1
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
72 1
|
2月前
|
缓存 算法 网络协议
OSPF的路由计算算法:原理与应用
OSPF的路由计算算法:原理与应用
74 4
|
2月前
|
机器学习/深度学习 监控 算法
基于反光衣和检测算法的应用探索
本文探讨了利用机器学习和计算机视觉技术进行反光衣检测的方法,涵盖图像预处理、目标检测与分类、特征提取等关键技术。通过YOLOv5等模型的训练与优化,展示了实现高效反光衣识别的完整流程,旨在提升智能检测系统的性能,应用于交通安全、工地监控等领域。
|
2月前
|
存储 算法 网络协议
OSPF的SPF算法介绍:原理、实现与应用
OSPF的SPF算法介绍:原理、实现与应用
95 3
|
2月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用