基于ACGWO混沌灰狼优化算法的MATLAB对比仿真,对比标准的GWO

简介: 基于ACGWO混沌灰狼优化算法的MATLAB对比仿真,对比标准的GWO

1.算法仿真效果
matlab2022a仿真结果如下:
f47b6c7c3c6559eafed6cb7b6a844598_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
灰狼优化算法(GWO),灵感来自于灰狼.GWO算法模拟了自然界灰狼的领导层级和狩猎机制.四种类型的灰狼,如 α,β,δ,w 被用来模拟领导阶层。此外,还实现了狩猎的三个主要步骤:寻找猎物、包围猎物和攻击猎物。

   为了在设计GWO算法时对灰狼的社会等级进行数学建模,我们将最适解作为α .因此,第二和第三个最佳解决方案分别被命名为 β 和 δ .剩下的候选解被假定为 w .在GWO算法中,狩猎过程由 ,α,β 和 δ 引导. w 狼跟随这三只狼。

  在狩猎过程中,将灰狼围捕猎物的行为定义如下:

D=|C⋅Xp(t)−X(t)| (1)

X(t+1)=Xp(t)−A⋅D (2)

式(1)表示个体与猎物间的距离,式(2)是灰狼的位置更新公式.其中, t 是目前的迭代代数, A 和 C 是系数向量, Xp 和 X 分别是猎物的位置向量和灰狼的位置向量. A 和 C 的公式如下:

A=2a⋅r1−a (3)

C=2⋅r2 (4)

其中, a 是收敛因子,随着迭代次数从2线性减小到0, r1 和 r2 的模取[0,1]之间的随机数.

2.2 狩猎

灰狼能够识别猎物的位置并包围它们.当灰狼识别出猎物的位置后, β 和 δ 在 α 的带领下指导狼群包围猎物.灰狼个体跟踪猎物位置的数学模型描述如下:

Dα=|C1⋅Xα−X|

Dβ=|C2⋅Xβ−X| (5)

Dδ=|C3⋅Xδ−X|

其中, Dα , Dβ和 Dδ 分别表示 α,β 和 δ 与其他个体间的距离; Xα,Xβ 和 Xδ 分别代表 α,β 和 δ 当前位置; C1,C2,C3 是随机向量, X 是当前灰狼的位置。

X1=Xα−A1⋅(Dα)

X2=Xβ−A2⋅(Dβ) (6)

X3=Xδ−A3⋅(Dδ)

X(t+1)=X1+X2+X33 (7)

式(6)分别定义了狼群中 w 个体朝向 α,β 和 δ 前进的步长和方向,式(7)定义了ω的最终位置。

2.3 攻击猎物

    当猎物停止移动时,灰狼通过攻击来完成狩猎过程.为了模拟逼近猎物, a 的值被逐渐减小,因此 A 的波动范围也随之减小.换句话说,在迭代过程中,当 a 的值从2线性下降到0时,其对应的 A 的值也在区间 [−a,a] 内变化.如图3所 示,当 A 的值位于区间内时,灰狼的下一位置可以位于其当前位置和猎物位置之间的任意位置.当 |A|<1 时,狼群向猎物发起攻击(陷入局部最优).当 |A|>1 时,灰狼与猎物分离,希望找到更合适的猎物(全局最优).

   GWO算法还有另一个组件 C 来帮助发现新的解决方案.由式(4)可知, C 是[0,2]之 间 的随机值. C 表示狼所在的位置对猎物影响的随机权重, C>1 表示影响权重大,反之,表示影响权重小.这有助于GWO算法更随机地表现并支持探索,同时可在优化过程中避免陷入局部最优.另外,与 A 不同, C 是非线性减小的.这样,从最初的迭代到最终的迭代中,它都提供了决策空间中的全局搜索.在算法陷入了局部最优并且不易跳出时, C 的随机性在避免局部最优方面发挥了非常重要的作用,尤其是在最后需要获得全局最优解的迭代中.

3.MATLAB核心程序
``` %a=2-2((i)/Max_iter); % 对每一次迭代,计算相应的a值,a decreases linearly fron 2 to 0
a=2-2
((1/(exp(1)-1))*(exp(i/Max_iter)-1));
% 包围猎物,位置更新
for i=1:size(Positions,1)
for j=1:size(Positions,2)

        r1=rand(); % r1 is a random number in [0,1]
        r2=rand(); % r2 is a random number in [0,1]

        A1=2*a*r1-a; % 计算系数A,Equation (3.3)
        C1=2*r2;     % 计算系数C,Equation (3.4)

        % Alpha狼位置更新
        D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
        X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1

        r1=rand();
        r2=rand();

        A2=2*a*r1-a; % Equation (3.3)
        C2=2*r2;     % Equation (3.4)

        % Beta狼位置更新
        D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
        X2=Beta_pos(j)-A2*D_beta;                  % Equation (3.6)-part 2       

        r1=rand();
        r2=rand(); 

        A3=2*a*r1-a; % 计算系数A,Equation (3.3)
        C3=2*r2;     %计算系数C, Equation (3.4)

        % Delta狼位置更新
        D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
        X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3             

        % 位置更新
        Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)
    end
    for t=1:20 %次数
  %1生成
  cxl=rand(SearchAgents_no,dim);

end
for j=1:dim
cxl(j)=4cxl(j)(1-cxl(j)); %logic混沌方程
end
end
l=l+1;
Convergence_curve(l)=Alpha_score;
end
```

相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
算法
基于电导增量MPPT控制算法的光伏发电系统simulink建模与仿真
本课题基于电导增量MPPT控制算法,使用MATLAB2022a的Simulink进行光伏发电系统的建模与仿真,输出系统电流、电压及功率。电导增量调制(IC)算法通过检测电压和电流变化率,实时调整光伏阵列工作点,确保其在不同光照和温度条件下始终处于最大功率输出状态。仿真结果展示了该算法的有效性,并结合PWM技术调节逆变流器占空比,提高系统效率和稳定性。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68

热门文章

最新文章