基于ACGWO混沌灰狼优化算法的MATLAB对比仿真,对比标准的GWO

简介: 基于ACGWO混沌灰狼优化算法的MATLAB对比仿真,对比标准的GWO

1.算法仿真效果
matlab2022a仿真结果如下:
f47b6c7c3c6559eafed6cb7b6a844598_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
灰狼优化算法(GWO),灵感来自于灰狼.GWO算法模拟了自然界灰狼的领导层级和狩猎机制.四种类型的灰狼,如 α,β,δ,w 被用来模拟领导阶层。此外,还实现了狩猎的三个主要步骤:寻找猎物、包围猎物和攻击猎物。

   为了在设计GWO算法时对灰狼的社会等级进行数学建模,我们将最适解作为α .因此,第二和第三个最佳解决方案分别被命名为 β 和 δ .剩下的候选解被假定为 w .在GWO算法中,狩猎过程由 ,α,β 和 δ 引导. w 狼跟随这三只狼。

  在狩猎过程中,将灰狼围捕猎物的行为定义如下:

D=|C⋅Xp(t)−X(t)| (1)

X(t+1)=Xp(t)−A⋅D (2)

式(1)表示个体与猎物间的距离,式(2)是灰狼的位置更新公式.其中, t 是目前的迭代代数, A 和 C 是系数向量, Xp 和 X 分别是猎物的位置向量和灰狼的位置向量. A 和 C 的公式如下:

A=2a⋅r1−a (3)

C=2⋅r2 (4)

其中, a 是收敛因子,随着迭代次数从2线性减小到0, r1 和 r2 的模取[0,1]之间的随机数.

2.2 狩猎

灰狼能够识别猎物的位置并包围它们.当灰狼识别出猎物的位置后, β 和 δ 在 α 的带领下指导狼群包围猎物.灰狼个体跟踪猎物位置的数学模型描述如下:

Dα=|C1⋅Xα−X|

Dβ=|C2⋅Xβ−X| (5)

Dδ=|C3⋅Xδ−X|

其中, Dα , Dβ和 Dδ 分别表示 α,β 和 δ 与其他个体间的距离; Xα,Xβ 和 Xδ 分别代表 α,β 和 δ 当前位置; C1,C2,C3 是随机向量, X 是当前灰狼的位置。

X1=Xα−A1⋅(Dα)

X2=Xβ−A2⋅(Dβ) (6)

X3=Xδ−A3⋅(Dδ)

X(t+1)=X1+X2+X33 (7)

式(6)分别定义了狼群中 w 个体朝向 α,β 和 δ 前进的步长和方向,式(7)定义了ω的最终位置。

2.3 攻击猎物

    当猎物停止移动时,灰狼通过攻击来完成狩猎过程.为了模拟逼近猎物, a 的值被逐渐减小,因此 A 的波动范围也随之减小.换句话说,在迭代过程中,当 a 的值从2线性下降到0时,其对应的 A 的值也在区间 [−a,a] 内变化.如图3所 示,当 A 的值位于区间内时,灰狼的下一位置可以位于其当前位置和猎物位置之间的任意位置.当 |A|<1 时,狼群向猎物发起攻击(陷入局部最优).当 |A|>1 时,灰狼与猎物分离,希望找到更合适的猎物(全局最优).

   GWO算法还有另一个组件 C 来帮助发现新的解决方案.由式(4)可知, C 是[0,2]之 间 的随机值. C 表示狼所在的位置对猎物影响的随机权重, C>1 表示影响权重大,反之,表示影响权重小.这有助于GWO算法更随机地表现并支持探索,同时可在优化过程中避免陷入局部最优.另外,与 A 不同, C 是非线性减小的.这样,从最初的迭代到最终的迭代中,它都提供了决策空间中的全局搜索.在算法陷入了局部最优并且不易跳出时, C 的随机性在避免局部最优方面发挥了非常重要的作用,尤其是在最后需要获得全局最优解的迭代中.

3.MATLAB核心程序
``` %a=2-2((i)/Max_iter); % 对每一次迭代,计算相应的a值,a decreases linearly fron 2 to 0
a=2-2
((1/(exp(1)-1))*(exp(i/Max_iter)-1));
% 包围猎物,位置更新
for i=1:size(Positions,1)
for j=1:size(Positions,2)

        r1=rand(); % r1 is a random number in [0,1]
        r2=rand(); % r2 is a random number in [0,1]

        A1=2*a*r1-a; % 计算系数A,Equation (3.3)
        C1=2*r2;     % 计算系数C,Equation (3.4)

        % Alpha狼位置更新
        D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
        X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1

        r1=rand();
        r2=rand();

        A2=2*a*r1-a; % Equation (3.3)
        C2=2*r2;     % Equation (3.4)

        % Beta狼位置更新
        D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
        X2=Beta_pos(j)-A2*D_beta;                  % Equation (3.6)-part 2       

        r1=rand();
        r2=rand(); 

        A3=2*a*r1-a; % 计算系数A,Equation (3.3)
        C3=2*r2;     %计算系数C, Equation (3.4)

        % Delta狼位置更新
        D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
        X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3             

        % 位置更新
        Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)
    end
    for t=1:20 %次数
  %1生成
  cxl=rand(SearchAgents_no,dim);

end
for j=1:dim
cxl(j)=4cxl(j)(1-cxl(j)); %logic混沌方程
end
end
l=l+1;
Convergence_curve(l)=Alpha_score;
end
```

相关文章
|
9天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
17天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
16天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
17天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
18天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
202 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
129 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
93 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章

下一篇
无影云桌面