m基于FPGA的RGB转ycrcb颜色空间转换算法实现,包含testbench,对比三种转换方法

简介: m基于FPGA的RGB转ycrcb颜色空间转换算法实现,包含testbench,对比三种转换方法

1.算法仿真效果
vivado2019.2仿真结果如下:

f6d26621dfff52e0fe0b444a778e5c9f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中1为直接乘法公式计算;

2为移位法计算;

3为分布式计算;

2.算法涉及理论知识概要
人类获得信息的主要方式是视觉,通常情况下颜色有2种描述方式,一种是RGB色度空间表示,一种是 YCbCr色度空间表示。然而,普通的R GB颜色空间对视频的显示存在很多问题,将其转换为YCbCr颜色空间能够很 好地适应现代社会的要求,本文正是采用一种新的方法,通过FPGA成功地将其转化,并得到正确的结果,此方法内 部变量少、算法优点突出、实时性好,十分易于在实际工程中实现。

 RGB颜色空间
    在RGB颜色空间中,1个带颜色的图像采样是用3个 值来表示一个像素点的相对的红、绿和蓝色比(3种光线的 主样构成颜色)。任何颜色都可以通过把红、绿和蓝通过 不同的比例相混得到。CRT和LCD通过分别对每个像素 点的红绿蓝值进行显示来得到各种颜色。从一个通常的观

察距离来看,不同的构成部分可以达到颜色上的真实感。

    YCbCr颜色空间
   人类视觉系统(HVS)相比亮度来说对于颜色不是那 么敏感。在RGB颜色空间中,3种颜色被平等地看待,并 用相同的分辨率存放起来。但是通过把亮度与颜色信息 分离,并对亮度值取更高的分辨率可以更有效地表示1个 颜色图像。

   颜色空间转换
    YCbCr颜色空间和它的变换(通常写为YUV)是1种 流行而高效的表示一个颜色图像的方法。YCrCb是国际 通用的B T.601数字电视信号中使用的彩色空间,它由 YU V彩色空间经过缩放和平移得到。YCrCb色度空间与 R GB色度空间的转换公式如下:

63987c8d06c1df99b3b83c2175e65691_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

直接乘法公式计算

   直接相乘,我们直接调用系统的IP核,如果版本不同,需要重新生成。如代码段中:

ac727f0b006a62114a2f9e7943b308aa_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

移位法计算

位移法就是用位移的方法来替换乘法器。

根据二进制乘法过程。二进制的乘法可以理解为,移位相加。
541d37e45025aa479201a7301ac2d21e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

具体代码如上所示:

例如R*0010001100,那么其第三,四,八为1,所以结果为R移位7,R移位3,R移位2,最后三个相加得到。

f8499100ba64c1dbfa59a508169516f0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

分布式计算

分布式算法是一种快速的流水线结构的算法,根据你提供的论文的要求,这个分布式算法的具体物理结构如下所示:

178dd318a36590c115433c04ae1314ab_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

将输入信号的每一位和另一个数相乘,通过10级流水线操作后,我们可以得到10个部分积,然后将10个部分积累加,得到最后的结果。

7fc8aee15d507b234edb57be376353d1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.Verilog核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2023/03/26 18:01:20
// Design Name:
// Module Name: tops
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module tops(
clk,
ena,
r,
g,
b,
y,
cr,
cb
);

input clk;//输入时钟
input ena;//输入使能信号
input[7:0]r; //输入R,G,B信号
input[7:0]g;
input[7:0]b;

output[7:0]y;//输出Y,CR,CB信号
output[7:0]cr;
output[7:0]cb;

//mult your_instance_name (
// .CLK(CLK), // input wire CLK
// .A(A), // input wire [9 : 0] A
// .B(B), // input wire [9 : 0] B
// .SCLR(SCLR), // input wire SCLR
// .P(P) // output wire [19 : 0] P
//);
//================================================
wire[21:0]y1;
wire[21:0]cr1;
wire[21:0]cb1;
//================================================
wire[19:0]yr;
wire[19:0]yg;
wire[19:0]yb;

mult mult_yr(
.CLK (clk),
.A (10'd306),
.B ({r,2'b00}),
.SCLR (ena),
.P (yr)
);

mult mult_yg(
.CLK (clk),
.A (10'd601),
.B ({g,2'b00}),
.SCLR (ena),
.P (yg)
);

mult mult_yb(
.CLK (clk),
.A (10'd116),
.B ({b,2'b00}),
.SCLR (ena),
.P (yb)
);

assign y1 = yr + yg + yb;
assign y = y1[21:14];//y计算公式

wire[19:0]crr;
wire[19:0]crg;
wire[19:0]crb;

mult mult_crr(
.CLK (clk),
.A (10'd512),
.B ({r,2'b00}),
.SCLR (ena),
.P (crr)
);

mult mult_crg(
.CLK (clk),
.A (10'd429),
.B ({g,2'b00}),
.SCLR (ena),
.P (crg)
);

mult mult_crb(
.CLK (clk),
.A (10'd83),
.B ({b,2'b00}),
.SCLR (ena),
.P (crb)
);

assign cr1 = crr - crg - crb;
assign cr = cr1[21:14]+128;//cr计算公式

wire[19:0]cbr;
wire[19:0]cbg;
wire[19:0]cbb;

mult mult_cbr(
.CLK (clk),
.A (10'd173),
.B ({r,2'b00}),
.SCLR (ena),
.P (cbr)
);

mult mult_cbg(
.CLK (clk),
.A (10'd339),
.B ({g,2'b00}),
.SCLR (ena),
.P (cbg)
);

mult mult_cbb(
.CLK (clk),
.A (10'd512),
.B ({b,2'b00}),
.SCLR (ena),
.P (cbb)
);

assign cb1 = cbb - cbr - cbg;
assign cb = cb1[21:14]+128;//cb计算公式
endmodule
```

相关文章
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
存储 编解码 算法
基于FPGA的直接数字频率合成器verilog实现,包含testbench
本项目基于Vivado 2019.2实现DDS算法,提供完整无水印运行效果预览。DDS(直接数字频率合成器)通过数字信号处理技术生成特定频率和相位的正弦波,核心组件包括相位累加器、正弦查找表和DAC。相位累加器在每个时钟周期累加频率控制字,正弦查找表根据相位值输出幅度,DAC将数字信号转换为模拟电压。项目代码包含详细中文注释及操作视频。
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
123 74
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
161 69
|
2月前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
83 26
|
3月前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
89 8
|
3月前
|
算法 物联网 异构计算
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
112 11
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
77 1
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的256QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了256QAM调制解调算法的仿真效果及理论基础。使用Vivado 2019.2进行仿真,分别在SNR为40dB、32dB和24dB下生成星座图,并导入Matlab进行分析。256QAM通过将8比特数据映射到复平面上的256个点,实现高效的数据传输。Verilog核心程序包括调制、信道噪声添加和解调模块,最终统计误码率。
81 0
|
4月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
80 4

热门文章

最新文章