带你读《智慧光网络:关键技术、应用实践和未来演进》——2.2.3 面向传输性能的光纤技术的发展

简介: 带你读《智慧光网络:关键技术、应用实践和未来演进》——2.2.3 面向传输性能的光纤技术的发展

2.2.3 面向传输性能的光纤技术的发展


光纤技术在提升传输性能方面的发展,主要是降低光纤传输中一些损坏信号质量的技术

特性影响,如降低光纤衰耗、降低非线性效应、降低光信号在单位长度光纤中传播的时延等。这些技术是光纤技术中的“节流”,一般是通过降低光纤介质对光信号的损耗来延长光信号在光纤中的传输距离。


1.超低损、大有效面积光纤

前面章节中谈到,当入纤光信号的功率超过一定数值时,纤芯中的光功率密度过高,导致了光纤材料的非线性极化效应。在100Gbit/s 及超过100Gbit/s 的系统中,为了追求传输距离和传输带宽,人们尝试着不断增加单纤传播的波长数目,并提高光纤的入纤功率,因而系统对非线性效应更加敏感。光纤的非线性效应与信号的光功率密度成正比,和光纤的有效面积成反比。大有效面积的光纤可以确保光纤在较高的入纤功率下减小传输系统的非线性效应。


另外,光纤技术在降低衰耗方面有了突破。以常规评估的80km 跨段距离为例,普通

G.652D 光纤损耗约0.2dB/km,即光纤损耗为16dB ;而G.654E 光纤损耗可以低0.17dB/km,同在16dB 光纤损耗下,跨段距离可以提升至94km,相比之前提升17.5%。因此,光信号在低衰耗光纤中传输时,只需要更少的放大器即可获得更好的信号质量。


超低损、大有效面积光纤的物理特性可以通过光纤折射率剖面图进行对比,如图2-5 所示。对比芯区掺杂GeO2-SiO2 的G.652D 光纤折射率分布结构可知,G.654E 光纤采用纯SiO2纤芯,减小了瑞利散射损耗,确保了光纤获得超低损耗,并通过增大纤芯直径,扩大了光纤的有效面积,减小了光纤非线性效应,同时引入下陷内包层,有效抑制了光场泄露,改善了光纤的弯曲性能。

image.png

图2-5 G.652D 光纤与G.654E 光纤的折射率分布结构示意

超低损、大有效面积光纤因为其显著的技术优势,正逐步进入商用阶段,中国电信上海—广州的G.654E 光纤骨干工程于2021 年竣工,全长2000km,基于90G 波特400Gbit/s 传输性能能达到1500km,对比G.652D 中约900km 的传输距离,其优势更加明显。


2.空芯光纤

顾名思义,空芯光纤引导光信号在空心区域传播,而不像传统光纤在其玻璃内传播。虽然目前空芯光纤在制造工艺、熔接难度、成本控制等方面还面临着巨大的技术挑战,但其技术优势非常明显。


(1)超低时延是空芯光纤的最大优势,近乎空气孔的芯区折射率比实芯玻璃低,理论上空芯光纤是传输光信号时延最低的方式,端到端的光纤传输时延相比于现有光纤低30% 以上。


(2)大模场直径和超低非线性,空芯光纤即便在保证单模传输的情况下,其模块直径也可达30μm,远大于普通单模光纤,其非线性效应比常规光纤材料的非线性效应低3 ~ 4 个数量级。


(3)低色散,空芯光纤在上千纳米的超宽频谱范围内提供约2ps/(nm · km)的低色散,是现有光纤色散的1/10,几乎不用进行色散补偿。


(4)超宽工作波段,通过设计空芯光纤可以提供从中红外到3μm 的超宽传输波段,波段范围超过1000nm,轻松支持普通光纤的O 波段、S 波段、E 波段、C 波段、L 波段、U波段等。


(5)潜在的超低损耗,虽然目前实际能实现的空芯光纤的损耗还比较大,但理论上,空芯光纤在通信窗口的最小损耗极限可在0.1dB/km 以下,这比普通石英光纤的0.14dB/km 要低30% 以上。


(6)可控的偏振态,由于包层中的光子晶体很容易形成比较大的双折射,因而空芯光纤中的偏振态比较容易保持,即具有偏振保持的作用。


以上这些优势组合起来,空芯光纤还将在降低DSP 功耗和提高功率预算等方面提供比

常规光纤更好的性能。2020 年的光纤通信展览会及研讨会(OFC)上就有3 篇关于空芯光纤的PDP(Post-Deadline-Paper)论文,其中两篇是关于通信的,一篇是OFS 公司基于可现场部署的空芯光纤光缆进行的31 波WDM 的10Gbit/s 不归零(NRZ,Non Return to Zero)系统实时光传输,在无前向纠错(FEC,Forward Error Correction)的情况下实现3km 无误码超低时延实时光传输。另一篇文章展示了在618km 的低损耗空芯光纤上,传输61 个C 波段32G 波特率偏振模复用四相移相键控(PM-QPSK,Polarization-Multiplexed Quaternary PhaseShift Keying)信号和L 波段噪声信号,证明了100Gbit/s 相干信号在空芯光纤上具有进行近1000km 的长距传输能力。

相关文章
|
4月前
|
机器学习/深度学习 人工智能 监控
上海拔俗AI软件定制:让技术真正为你所用,拔俗网络这样做
在上海,企业正通过AI软件定制破解通用化难题。该模式以业务场景为核心,量身打造智能解决方案,涵盖场景化模型开发、模块化架构设计与数据闭环优化三大技术维度,推动技术与业务深度融合,助力企业实现高效、可持续的数字化转型。
170 0
|
5月前
|
运维 架构师 安全
二层协议透明传输:让跨域二层协议“无感穿越”多服务商网络
简介:本文详解二层协议透明传输技术,适用于企业网工、运营商及架构师,解决LLDP/LACP/BPDU跨运营商传输难题,实现端到端协议透传,提升网络韧性与运维效率。
|
5月前
|
监控 前端开发 安全
Netty 高性能网络编程框架技术详解与实践指南
本文档全面介绍 Netty 高性能网络编程框架的核心概念、架构设计和实践应用。作为 Java 领域最优秀的 NIO 框架之一,Netty 提供了异步事件驱动的网络应用程序框架,用于快速开发可维护的高性能协议服务器和客户端。本文将深入探讨其 Reactor 模型、ChannelPipeline、编解码器、内存管理等核心机制,帮助开发者构建高性能的网络应用系统。
389 0
|
6月前
|
Windows
电脑显示有问题,电脑连接不上网络,电脑没声音,电脑链接不上打印机?驱动人生就能解决所有问题
电脑显示有问题,电脑连接不上网络,电脑没声音,电脑链接不上打印机?驱动人生就能解决所有问题
155 0
|
7月前
|
监控 算法 安全
基于 C# 基数树算法的网络屏幕监控敏感词检测技术研究
随着数字化办公和网络交互迅猛发展,网络屏幕监控成为信息安全的关键。基数树(Trie Tree)凭借高效的字符串处理能力,在敏感词检测中表现出色。结合C#语言,可构建高时效、高准确率的敏感词识别模块,提升网络安全防护能力。
194 2
|
9月前
|
调度 Python
探索Python高级并发与网络编程技术。
可以看出,Python的高级并发和网络编程极具挑战,却也饱含乐趣。探索这些技术,你将会发现:它们好比是Python世界的海洋,有穿越风暴的波涛,也有寂静深海的奇妙。开始旅途,探索无尽可能吧!
235 15
|
9月前
|
监控 算法 JavaScript
基于 JavaScript 图算法的局域网网络访问控制模型构建及局域网禁止上网软件的技术实现路径研究
本文探讨局域网网络访问控制软件的技术框架,将其核心功能映射为图论模型,通过节点与边表示终端设备及访问关系。以JavaScript实现DFS算法,模拟访问权限判断,优化动态策略更新与多层级访问控制。结合流量监控数据,提升网络安全响应能力,为企业自主研发提供理论支持,推动智能化演进,助力数字化管理。
227 4
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
354 17
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
278 10