带你读《智慧光网络:关键技术、应用实践和未来演进》——2.2.3 面向传输性能的光纤技术的发展

简介: 带你读《智慧光网络:关键技术、应用实践和未来演进》——2.2.3 面向传输性能的光纤技术的发展

2.2.3 面向传输性能的光纤技术的发展


光纤技术在提升传输性能方面的发展,主要是降低光纤传输中一些损坏信号质量的技术

特性影响,如降低光纤衰耗、降低非线性效应、降低光信号在单位长度光纤中传播的时延等。这些技术是光纤技术中的“节流”,一般是通过降低光纤介质对光信号的损耗来延长光信号在光纤中的传输距离。


1.超低损、大有效面积光纤

前面章节中谈到,当入纤光信号的功率超过一定数值时,纤芯中的光功率密度过高,导致了光纤材料的非线性极化效应。在100Gbit/s 及超过100Gbit/s 的系统中,为了追求传输距离和传输带宽,人们尝试着不断增加单纤传播的波长数目,并提高光纤的入纤功率,因而系统对非线性效应更加敏感。光纤的非线性效应与信号的光功率密度成正比,和光纤的有效面积成反比。大有效面积的光纤可以确保光纤在较高的入纤功率下减小传输系统的非线性效应。


另外,光纤技术在降低衰耗方面有了突破。以常规评估的80km 跨段距离为例,普通

G.652D 光纤损耗约0.2dB/km,即光纤损耗为16dB ;而G.654E 光纤损耗可以低0.17dB/km,同在16dB 光纤损耗下,跨段距离可以提升至94km,相比之前提升17.5%。因此,光信号在低衰耗光纤中传输时,只需要更少的放大器即可获得更好的信号质量。


超低损、大有效面积光纤的物理特性可以通过光纤折射率剖面图进行对比,如图2-5 所示。对比芯区掺杂GeO2-SiO2 的G.652D 光纤折射率分布结构可知,G.654E 光纤采用纯SiO2纤芯,减小了瑞利散射损耗,确保了光纤获得超低损耗,并通过增大纤芯直径,扩大了光纤的有效面积,减小了光纤非线性效应,同时引入下陷内包层,有效抑制了光场泄露,改善了光纤的弯曲性能。

image.png

图2-5 G.652D 光纤与G.654E 光纤的折射率分布结构示意

超低损、大有效面积光纤因为其显著的技术优势,正逐步进入商用阶段,中国电信上海—广州的G.654E 光纤骨干工程于2021 年竣工,全长2000km,基于90G 波特400Gbit/s 传输性能能达到1500km,对比G.652D 中约900km 的传输距离,其优势更加明显。


2.空芯光纤

顾名思义,空芯光纤引导光信号在空心区域传播,而不像传统光纤在其玻璃内传播。虽然目前空芯光纤在制造工艺、熔接难度、成本控制等方面还面临着巨大的技术挑战,但其技术优势非常明显。


(1)超低时延是空芯光纤的最大优势,近乎空气孔的芯区折射率比实芯玻璃低,理论上空芯光纤是传输光信号时延最低的方式,端到端的光纤传输时延相比于现有光纤低30% 以上。


(2)大模场直径和超低非线性,空芯光纤即便在保证单模传输的情况下,其模块直径也可达30μm,远大于普通单模光纤,其非线性效应比常规光纤材料的非线性效应低3 ~ 4 个数量级。


(3)低色散,空芯光纤在上千纳米的超宽频谱范围内提供约2ps/(nm · km)的低色散,是现有光纤色散的1/10,几乎不用进行色散补偿。


(4)超宽工作波段,通过设计空芯光纤可以提供从中红外到3μm 的超宽传输波段,波段范围超过1000nm,轻松支持普通光纤的O 波段、S 波段、E 波段、C 波段、L 波段、U波段等。


(5)潜在的超低损耗,虽然目前实际能实现的空芯光纤的损耗还比较大,但理论上,空芯光纤在通信窗口的最小损耗极限可在0.1dB/km 以下,这比普通石英光纤的0.14dB/km 要低30% 以上。


(6)可控的偏振态,由于包层中的光子晶体很容易形成比较大的双折射,因而空芯光纤中的偏振态比较容易保持,即具有偏振保持的作用。


以上这些优势组合起来,空芯光纤还将在降低DSP 功耗和提高功率预算等方面提供比

常规光纤更好的性能。2020 年的光纤通信展览会及研讨会(OFC)上就有3 篇关于空芯光纤的PDP(Post-Deadline-Paper)论文,其中两篇是关于通信的,一篇是OFS 公司基于可现场部署的空芯光纤光缆进行的31 波WDM 的10Gbit/s 不归零(NRZ,Non Return to Zero)系统实时光传输,在无前向纠错(FEC,Forward Error Correction)的情况下实现3km 无误码超低时延实时光传输。另一篇文章展示了在618km 的低损耗空芯光纤上,传输61 个C 波段32G 波特率偏振模复用四相移相键控(PM-QPSK,Polarization-Multiplexed Quaternary PhaseShift Keying)信号和L 波段噪声信号,证明了100Gbit/s 相干信号在空芯光纤上具有进行近1000km 的长距传输能力。

目录
打赏
0
0
0
0
41
分享
相关文章
单位网络监控软件:Java 技术驱动的高效网络监管体系构建
在数字化办公时代,构建基于Java技术的单位网络监控软件至关重要。该软件能精准监管单位网络活动,保障信息安全,提升工作效率。通过网络流量监测、访问控制及连接状态监控等模块,实现高效网络监管,确保网络稳定、安全、高效运行。
83 11
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
50 9
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
算力流动的基石:边缘网络产品技术升级与实践探索
本文介绍了边缘网络产品技术的升级与实践探索,由阿里云专家分享。内容涵盖三大方面:1) 云编一体的混合组网方案,通过边缘节点实现广泛覆盖和高效连接;2) 基于边缘基础设施特点构建一网多态的边缘网络平台,提供多种业务形态的统一技术支持;3) 以软硬一体的边缘网关技术实现多类型业务网络平面统一,确保不同网络间的互联互通。边缘网络已实现全球覆盖、差异化连接及云边互联,支持即开即用和云网一体,满足各行业需求。
动态IP代理技术详解及网络性能优化
动态IP代理技术通过灵活更换IP地址,广泛应用于数据采集、网络安全测试等领域。本文详细解析其工作原理,涵盖HTTP、SOCKS代理及代理池的实现方法,并提供代码示例。同时探讨配置动态代理IP后如何通过智能调度、负载均衡、优化协议选择等方式提升网络性能,确保高效稳定的网络访问。
323 2
|
14天前
|
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
43 12
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
|
16天前
|
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
52 10
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
YOLOv11改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
YOLOv11改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
59 7
YOLOv11改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
63 10
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
25 4
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
AI时代的网络安全:传统技术的落寞与新机遇
在AI时代,网络安全正经历深刻变革。传统技术如多因素身份认证、防火墙和基于密码的系统逐渐失效,难以应对新型攻击。然而,AI带来了新机遇:智能化威胁检测、优化安全流程、生物特征加密及漏洞管理等。AI赋能的安全解决方案大幅提升防护能力,但也面临数据隐私和技能短缺等挑战。企业需制定清晰AI政策,强化人机协作,推动行业持续发展。
69 16

热门文章

最新文章