Apache Kafka-消费端消费重试和死信队列

简介: Apache Kafka-消费端消费重试和死信队列

20191116123525638.png

概述


Spring-Kafka 提供消费重试的机制。当消息消费失败的时候,Spring-Kafka 会通过消费重试机制,重新投递该消息给 Consumer ,让 Consumer 重新消费消息 。


默认情况下,Spring-Kafka 达到配置的重试次数时,【每条消息的失败重试时间,由配置的时间隔决定】Consumer 如果依然消费失败 ,那么该消息就会进入到死信队列。


Spring-Kafka 封装了消费重试和死信队列, 将正常情况下无法被消费的消息称为死信消息(Dead-Letter Message),将存储死信消息的特殊队列称为死信队列(Dead-Letter Queue)。


我们在应用中可以对死信队列中的消息进行监控重发,来使得消费者实例再次进行消费,消费端需要做幂等性的处理。


Code

POM依赖

  <dependencies>
    <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <!-- 引入 Spring-Kafka 依赖 -->
    <dependency>
      <groupId>org.springframework.kafka</groupId>
      <artifactId>spring-kafka</artifactId>
    </dependency>
    <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-test</artifactId>
      <scope>test</scope>
    </dependency>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <scope>test</scope>
    </dependency>
  </dependencies>


配置文件

spring:
  # Kafka 配置项,对应 KafkaProperties 配置类
  kafka:
    bootstrap-servers: 192.168.126.140:9092 # 指定 Kafka Broker 地址,可以设置多个,以逗号分隔
    # Kafka Producer 配置项
    producer:
      acks: 1 # 0-不应答。1-leader 应答。all-所有 leader 和 follower 应答。
      retries: 3 # 发送失败时,重试发送的次数
      key-serializer: org.apache.kafka.common.serialization.StringSerializer # 消息的 key 的序列化
      value-serializer: org.springframework.kafka.support.serializer.JsonSerializer # 消息的 value 的序列化
    # Kafka Consumer 配置项
    consumer:
      auto-offset-reset: earliest # 设置消费者分组最初的消费进度为 earliest
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.springframework.kafka.support.serializer.JsonDeserializer
      properties:
        spring:
          json:
            trusted:
              packages: com.artisan.springkafka.domain
    # Kafka Consumer Listener 监听器配置
    listener:
      missing-topics-fatal: false # 消费监听接口监听的主题不存在时,默认会报错。所以通过设置为 false ,解决报错
logging:
  level:
    org:
      springframework:
        kafka: ERROR # spring-kafka
      apache:
        kafka: ERROR # kafka


配置类

首先要写一个配置类,用于处理消费异常 ErrorHandler

package com.artisan.springkafka.configuration;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Primary;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.listener.*;
import org.springframework.util.backoff.BackOff;
import org.springframework.util.backoff.FixedBackOff;
/**
 * @author 小工匠
 * @version 1.0
 * @description: TODO
 * @date 2021/2/18 14:32
 * @mark: show me the code , change the world
 */
@Configuration
public class KafkaConfiguration {
    private Logger logger = LoggerFactory.getLogger(getClass());
    @Bean
    @Primary
    public ErrorHandler kafkaErrorHandler(KafkaTemplate<?, ?> template) {
        logger.warn("kafkaErrorHandler begin to Handle");
        // <1> 创建 DeadLetterPublishingRecoverer 对象
        ConsumerRecordRecoverer recoverer = new DeadLetterPublishingRecoverer(template);
        // <2> 创建 FixedBackOff 对象   设置重试间隔 10秒 次数为 3次
        BackOff backOff = new FixedBackOff(10 * 1000L, 3L);
        // <3> 创建 SeekToCurrentErrorHandler 对象
        return new SeekToCurrentErrorHandler(recoverer, backOff);
    }
//    @Bean
//    @Primary
//    public BatchErrorHandler kafkaBatchErrorHandler() {
//        // 创建 SeekToCurrentBatchErrorHandler 对象
//        SeekToCurrentBatchErrorHandler batchErrorHandler = new SeekToCurrentBatchErrorHandler();
//        // 创建 FixedBackOff 对象
//        BackOff backOff = new FixedBackOff(10 * 1000L, 3L);
//        batchErrorHandler.setBackOff(backOff);
//        // 返回
//        return batchErrorHandler;
//    }
}



Spring-Kafka 通过实现自定义的 SeekToCurrentErrorHandler ,当 Consumer 消费消息异常的时候,进行拦截处理:


重试小于最大次数时,重新投递该消息给 Consumer

重试到达最大次数时,如果Consumer 还是消费失败时,该消息就会发送到死信队列。 死信队列的 命名规则为: 原有 Topic + .DLT 后缀 = 其死信队列的 Topic

 ConsumerRecordRecoverer recoverer = new DeadLetterPublishingRecoverer(template);

创建 DeadLetterPublishingRecoverer 对象,它负责实现,在重试到达最大次数时,Consumer 还是消费失败时,该消息就会发送到死信队列。

BackOff backOff = new FixedBackOff(10 * 1000L, 3L);

20210218165959139.png


也可以选择 BackOff 的另一个子类 ExponentialBackOff 实现,提供指数递增的间隔时间

new SeekToCurrentErrorHandler(recoverer, backOff);


创建 SeekToCurrentErrorHandler 对象,负责处理异常,串联整个消费重试的整个过程。


SeekToCurrentErrorHandler


在消息消费失败时,SeekToCurrentErrorHandler 会将 调用 Kafka Consumer 的 seek(TopicPartition partition, long offset) 方法,将 Consumer 对于该消息对应的 TopicPartition 分区的本地进度设置成该消息的位置。


这样,Consumer 在下次从 Kafka Broker 拉取消息的时候,又能重新拉取到这条消费失败的消息,并且是第一条。


同时,Spring-Kafka 使用 FailedRecordTracker 对每个 Topic 的每个 TopicPartition 消费失败次数进行计数,这样相当于对该 TopicPartition 的第一条消费失败的消息的消费失败次数进行计数。


另外,在 FailedRecordTracker 中,会调用 BackOff 来进行计算,该消息的下一次重新消费的时间,通过 Thread#sleep(...) 方法,实现重新消费的时间间隔。


注意:


FailedRecordTracker 提供的计数是客户端级别的,重启 JVM 应用后,计数是会丢失的。所以,如果想要计数进行持久化,需要自己重新实现下 FailedRecordTracker 类,通过 ZooKeeper 存储计数。


SeekToCurrentErrorHandler 是只针对消息的单条消费失败的消费重试处理。如果想要有消息的批量消费失败的消费重试处理,可以使用 SeekToCurrentBatchErrorHandler 。配置方式如下

@Bean
@Primary
public BatchErrorHandler kafkaBatchErrorHandler() {
    // 创建 SeekToCurrentBatchErrorHandler 对象
    SeekToCurrentBatchErrorHandler batchErrorHandler = new SeekToCurrentBatchErrorHandler();
    // 创建 FixedBackOff 对象
    BackOff backOff = new FixedBackOff(10 * 1000L, 3L);
    batchErrorHandler.setBackOff(backOff);
    // 返回
    return batchErrorHandler;
}

SeekToCurrentBatchErrorHandler 暂时不支持死信队列的机制。


自定义逻辑处理消费异常

支持自定义 ErrorHandler 或 BatchErrorHandler 实现类,实现对消费异常的自定义的逻辑

比如 https://github.com/spring-projects/spring-kafka/blob/master/spring-kafka/src/main/java/org/springframework/kafka/listener/LoggingErrorHandler.java

public class LoggingErrorHandler implements ErrorHandler {
  private static final LogAccessor LOGGER = new LogAccessor(LogFactory.getLog(LoggingErrorHandler.class));
  @Override
  public void handle(Exception thrownException, ConsumerRecord<?, ?> record) {
    LOGGER.error(thrownException, () -> "Error while processing: " + ObjectUtils.nullSafeToString(record));
  }
}

配置方式同 SeekToCurrentErrorHandlerSeekToCurrentBatchErrorHandler


生产者

   package com.artisan.springkafka.producer;
import com.artisan.springkafka.constants.TOPIC;
import com.artisan.springkafka.domain.MessageMock;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.support.SendResult;
import org.springframework.stereotype.Component;
import org.springframework.util.concurrent.ListenableFuture;
import java.util.Random;
import java.util.concurrent.ExecutionException;
/**
 * @author 小工匠
 * @version 1.0
 * @description: TODO
 * @date 2021/2/17 22:25
 * @mark: show me the code , change the world
 */
@Component
public class ArtisanProducerMock {
    @Autowired
    private KafkaTemplate<Object,Object> kafkaTemplate ;
    public ListenableFuture<SendResult<Object, Object>> sendMsgASync()  {
        // 模拟发送的消息
        Integer id = new Random().nextInt(100);
        MessageMock messageMock = new MessageMock(id,"messageSendByAsync-" + id);
        // 异步发送消息
        ListenableFuture<SendResult<Object, Object>> result = kafkaTemplate.send(TOPIC.TOPIC, messageMock);
        return result ;
    }
}


消费者

 package com.artisan.springkafka.consumer;
import com.artisan.springkafka.domain.MessageMock;
import com.artisan.springkafka.constants.TOPIC;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
/**
 * @author 小工匠
 * @version 1.0
 * @description: TODO
 * @date 2021/2/17 22:33
 * @mark: show me the code , change the world
 */
@Component
public class ArtisanCosumerMock {
    private Logger logger = LoggerFactory.getLogger(getClass());
    private static final String CONSUMER_GROUP_PREFIX = "MOCK-A" ;
    @KafkaListener(topics = TOPIC.TOPIC ,groupId = CONSUMER_GROUP_PREFIX + TOPIC.TOPIC)
    public void onMessage(MessageMock messageMock){
        logger.info("【接受到消息][线程:{} 消息内容:{}]", Thread.currentThread().getName(), messageMock);
        // 模拟抛出一次一行
        throw new RuntimeException("MOCK Handle Exception Happened");
    }
}

在消费消息时候,抛出一个 RuntimeException 异常,模拟消费失败


单元测试

 package com.artisan.springkafka.produceTest;
import com.artisan.springkafka.SpringkafkaApplication;
import com.artisan.springkafka.producer.ArtisanProducerMock;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.kafka.support.SendResult;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.util.concurrent.ListenableFuture;
import org.springframework.util.concurrent.ListenableFutureCallback;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
/**
 * @author 小工匠
 * * @version 1.0
 * @description: TODO
 * @date 2021/2/17 22:40
 * @mark: show me the code , change the world
 */
@RunWith(SpringRunner.class)
@SpringBootTest(classes = SpringkafkaApplication.class)
public class ProduceMockTest {
    private Logger logger = LoggerFactory.getLogger(getClass());
    @Autowired
    private ArtisanProducerMock artisanProducerMock;
    @Test
    public void testAsynSend() throws ExecutionException, InterruptedException {
        logger.info("开始发送");
        artisanProducerMock.sendMsgASync().addCallback(new ListenableFutureCallback<SendResult<Object, Object>>() {
            @Override
            public void onFailure(Throwable throwable) {
                logger.info(" 发送异常{}]]", throwable);
            }
            @Override
            public void onSuccess(SendResult<Object, Object> objectObjectSendResult) {
                logger.info("回调结果 Result =  topic:[{}] , partition:[{}], offset:[{}]",
                        objectObjectSendResult.getRecordMetadata().topic(),
                        objectObjectSendResult.getRecordMetadata().partition(),
                        objectObjectSendResult.getRecordMetadata().offset());
            }
        });
        // 阻塞等待,保证消费
        new CountDownLatch(1).await();
    }
}


测速结果

我们把这个日志来梳理一下

2021-02-18 16:18:08.032  INFO 25940 --- [           main] c.a.s.produceTest.ProduceMockTest        : 开始发送
2021-02-18 16:18:08.332  INFO 25940 --- [ad | producer-1] c.a.s.produceTest.ProduceMockTest        : 回调结果 Result =  topic:[C_RT_TOPIC] , partition:[0], offset:[0]
2021-02-18 16:18:08.371  INFO 25940 --- [ntainer#0-0-C-1] c.a.s.consumer.ArtisanCosumerMock        : 【接受到消息][线程:org.springframework.kafka.KafkaListenerEndpointContainer#0-0-C-1 消息内容:MessageMock{id=15, name='messageSendByAsync-15'}]
2021-02-18 16:18:18.384 ERROR 25940 --- [ntainer#0-0-C-1] essageListenerContainer$ListenerConsumer : Error handler threw an exception
......
......
......
2021-02-18 16:18:18.388  INFO 25940 --- [ntainer#0-0-C-1] c.a.s.consumer.ArtisanCosumerMock        : 【接受到消息][线程:org.springframework.kafka.KafkaListenerEndpointContainer#0-0-C-1 消息内容:MessageMock{id=15, name='messageSendByAsync-15'}]
2021-02-18 16:18:28.390 ERROR 25940 --- [ntainer#0-0-C-1] essageListenerContainer$ListenerConsumer : Error handler threw an exception
......
......
......
2021-02-18 16:18:28.394  INFO 25940 --- [ntainer#0-0-C-1] c.a.s.consumer.ArtisanCosumerMock        : 【接受到消息][线程:org.springframework.kafka.KafkaListenerEndpointContainer#0-0-C-1 消息内容:MessageMock{id=15, name='messageSendByAsync-15'}]
2021-02-18 16:18:38.395 ERROR 25940 --- [ntainer#0-0-C-1] essageListenerContainer$ListenerConsumer : Error handler threw an exception
......
......
......
2021-02-18 16:18:38.399  INFO 25940 --- [ntainer#0-0-C-1] c.a.s.consumer.ArtisanCosumerMock        : 【接受到消息][线程:org.springframework.kafka.KafkaListenerEndpointContainer#0-0-C-1 消息内容:MessageMock{id=15, name='messageSendByAsync-15'}]



清晰了么 老兄?

是不是和我们设置的消费重试

BackOff backOff = new FixedBackOff(10 * 1000L, 3L);


10秒 重试3次

3次处理后依然失败,转入死信队列

看看数据


20210219220158748.png


源码地址

https://github.com/yangshangwei/boot2/tree/master/springkafkaRetries

相关文章
|
3月前
|
消息中间件 安全 Kafka
Apache Kafka安全加固指南:保护你的消息传递系统
【10月更文挑战第24天】在现代企业环境中,数据的安全性和隐私保护至关重要。Apache Kafka作为一款广泛使用的分布式流处理平台,其安全性直接影响着业务的稳定性和用户数据的安全。作为一名资深的Kafka使用者,我深知加强Kafka安全性的重要性。本文将从个人角度出发,分享我在实践中积累的经验,帮助读者了解如何有效地保护Kafka消息传递系统的安全性。
178 7
|
3月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
137 5
|
3月前
|
消息中间件 存储 监控
构建高可用性Apache Kafka集群:从理论到实践
【10月更文挑战第24天】随着大数据时代的到来,数据传输与处理的需求日益增长。Apache Kafka作为一个高性能的消息队列服务,因其出色的吞吐量、可扩展性和容错能力而受到广泛欢迎。然而,在构建大规模生产环境下的Kafka集群时,保证其高可用性是至关重要的。本文将从个人实践经验出发,详细介绍如何构建一个高可用性的Kafka集群,包括集群规划、节点配置以及故障恢复机制等方面。
145 4
|
3月前
|
消息中间件 Java Kafka
什么是Apache Kafka?如何将其与Spring Boot集成?
什么是Apache Kafka?如何将其与Spring Boot集成?
109 5
|
3月前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
85 1
|
3月前
|
消息中间件 Ubuntu Java
Ubuntu系统上安装Apache Kafka
Ubuntu系统上安装Apache Kafka
|
3月前
|
消息中间件 监控 Kafka
Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面
随着大数据技术的发展,Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面,方便管理和监控 Kafka 集群。本文详细介绍了 Kafka Manager 的部署步骤和基本使用方法,包括配置文件的修改、启动命令、API 示例代码等,帮助你快速上手并有效管理 Kafka 集群。
73 0
|
2月前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
394 33
The Past, Present and Future of Apache Flink
|
4月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
1023 13
Apache Flink 2.0-preview released
|
4月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
172 3

热门文章

最新文章

推荐镜像

更多