Apache Flink CDC 3.1.0 发布公告

简介: Apache Flink 社区很高兴地宣布发布 Flink CDC 3.1.0!

Apache Flink 社区很高兴地宣布发布 Flink CDC 3.1.0!这是社区在接受 Flink CDC 作为 Apache Flink 的子项目后的首个版本,带来了令人兴奋的新功能,如 transformation 的支持和分库分表合并。Flink CDC 的生态系统也在不断扩展,包括新增的 Pipeline 连接器 Kafka 和 Paimon 以及对已有的 Source 连接器增强。

欢迎浏览 Flink CDC 文档和尝试快速入门教程来探索 Flink CDC 的世界!同时欢迎下载该版本并通过 Flink 的邮件列表JIRA在 Flink 社区进行讨论和分享,期待大家的反馈!

Flink CDC 3.1 快速预览

作为 Flink CDC 成为 Apache Flink 子项目之后的首个版本,3.1 带来了许多新功能与稳定性提升。主要亮点包括:

  1. Transformation 支持:通过 YAML 管道定义中的 transform 部分,用户可以对数据变化事件进行投影、计算和添加常量列等转化,使用类似 SQL 的语法,提升数据集成管道的灵活性。
  2. 分库分表合并支持:可以通过在 YAML 管道定义中配置路由将多个表合并到一个目标表,自动处理业务数据在不同表或数据库的分区及源表的 schema 变化。
  3. 新连接器:引入了新的 Apache Kafka 和 Apache Paimon 的 Pipeline Sink,增强了生态系统的扩展性,其中Kafka Sink 使得用户可以发送原始Debeizum/ Canal Json 格式的CDC数据到消息队列,Paimon Sink 则是让用户可以简单高效地完成MySQL实时入湖。
  4. 连接器改进:如 MySQL 增加了 tables.exclude 选项和 MysqlDebeziumTimeConverter,OceanBase 支持 DebeziumDeserializationSchema,Db2 迁移到统一增量快照框架等。

Flink CDC 3.1 核心特性解读

Transformation 支持

Flink CDC 3.1.0 引入了在 CDC pipeline 中进行数据变换(transformation)的功能。通过在 YAML pipeline 定义中加入 transform 部分,用户现在可以轻松地对来源的数据变更事件应用各种变换,包括投影、计算和添加常量列,从而提高数据集成管道的效率。新特性利用类似 SQL 的语法定义这些转换,确保用户可以快速适应并使用它。例如,只需编写如下 YAML 语句块:

transform:
  - source-table: db.tbl1
    projection: id, age, weight, height, weight / (height * height) as bmi
    filter: age > 18 AND name IS NOT NULL

即可对传递的数据流应用投影操作(仅保留原表中的部分列)、计算操作(根据原列数据计算新列并追加到数据记录中)和过滤操作(从结果中清除符合条件的数据行)。可以书写多条 Transform 规则,它们会同时生效。[1]

分库分表合并支持

Flink CDC 3.1.0 现在通过在 YAML pipeline 定义中配置 route,在分库分表场景下将多表合并为一个。由于业务数据量庞大,业务数据经常会被分别存放在多个表甚至数据库中。通过配置route,用户可以将多张源表映射至同一个目标表,在同步时,数据变更事件(DataChangeEvent)和 Schema 变更事件都将被合并到指定的目标表中。例如,只需编写如下 YAML 语句块:

route:
  - source-table: db.tbl\.*
    sink-table: db.unified
  - source-table: db.tbl_log\.*
    sink-table: db.log

即可将源库中所有匹配 tbl.*tbl_log.*正则表达式的分片表合并,并分别同步到下游的 db.unifieddb.log汇表中。(.用于分隔数据库名称和表名称,因此作为正则表达式关键字时需要使用 \进行转义。)可以书写多条 Route 规则,它们会同时生效。[2]

Flink CDC 3.1 新功能最佳实践

使用 Kafka Pipeline Sink 高效写入 Canal/Debezium 格式数据

Flink CDC 3.1.0 引入了新的 Kafka Pipeline Sink(基于 Kafka 3.2.3 版本)。现在,您可以编写如下所示的 YAML 语句块来定义一个从 MySQL 捕获变化数据并写入下游 Kafka Sink 的 Pipeline 作业[3]:

source:
   type: mysql
   # ...

sink:
  type: kafka
  properties.bootstrap.servers: PLAINTEXT://localhost:62510
  value.format: canal-json

该作业将来自 MySQL 上游的变化数据编码为 Canal JSON 格式,并写入到指定的 Kafka 服务器中;相比于 Flink SQL Changelog 格式,Flink CDC 不会将数据更新事件拆分为 BEFORE 和 AFTER 两条记录,能够更高效地处理分区表场景,并支持将事件序列化为 Debezium 和 Canal JSON 格式。

Flink 支持将上述格式解析为标准变更消息处理[4],因此您可以简单地使用以下 Flink SQL 将其摄入流式处理框架,整个过程无需额外部署 Canal 或 Debezium 集群,直接复用已有 Flink 集群即可:

CREATE TABLE topic_products (
  -- 上游的 Schema 结构
) WITH (
 'connector' = 'kafka',
  -- ...
 'properties.bootstrap.servers' = 'localhost:9092',
 'format' = 'canal-json'  -- 从 Kafka 摄取 Canal JSON 格式数据
)

完整的数据流示意图如下所示:

更高效地实时入湖 Paimon

Flink CDC 3.1.0 引入了新的 Apache Paimon Pipeline Sink(基于 Paimon 0.7.0 版本)。现在,您可以编写如下所示的 YAML 语句块来定义一个从 MySQL 捕获变化数据并写入下游 Paimon Sink 的 Pipeline 作业[5]:

source:
  type: mysql
  # ...

sink:
  type: paimon
  catalog.properties.metastore: filesystem
  catalog.properties.warehouse: /path/warehouse

可选择的下游元数据存储支持 FileSystem 和 Hive。在启用 Schema Evolution 选项时,Flink CDC 会同时捕获数据变更和表结构变更、在应用 Transform 和 Route 规则后将数据发送到下游,并将结构变更应用到 Catalog 中。完整的数据流示意图如下所示:

相比于使用 Flink SQL 和 Paimon CDC Action 的同步方案,Flink CDC Pipeline 作业支持将上游表结构变更动态应用至下游,且进一步支持了对上游表进行列投影和行过滤,提供细粒度的数据路由规则,追加计算列的逻辑配置更加简单。例如,以下 Paimon Action 变换语句[6]:

flink run paimon-action.jar
    --metadata_column "table_name"
    --computed_column "name=UPPER(name)"
    --computed_column "nameage=CONCAT(name, age)"

可以使用 Flink CDC YAML 等效地表述为:

projection: \*, __table_name__, UPPER(name) as newage, CONCAT(name, age) as nameage

其他改进

MySQL Pipeline 连接器

在此版本中,MySQL pipeline source 引入了一个新的选项 tables.exclude,用户可以更简单地使用正则表达式排除不必要的表。

MySQL Source 连接器

MySQL CDC source 同时新增了一个自定义转换器 MysqlDebeziumTimeConverter,用于将时间类型列转换为更易于读取和序列化的字符串。

OceanBase Source 连接器

OceanBase CDC source 现在支持指定通用的 DebeziumDeserializationSchema,以重用现有的 Debezium 反序列化器。

Db2 Source 连接器

Db2 CDC source 已经迁移至统一的增量快照框架。

SinkFunction 支持

尽管 SinkFunction 在 Flink 中已被标记为弃用,但考虑到一些 Flink connector 仍在使用该 API,我们也为 CDC pipeline sink 支持 SinkFunction API 以帮助扩展 Flink CDC 的生态系统。

CLI 支持从 savepoint 恢复

Flink CDC pipeline 提交 CLI 现在支持通过命令行参数 --from-savepoint 从特定的 savepoint 文件恢复 Flink 作业。

Flink CDC 3.1 版本兼容性

捐赠给 Apache 基金会使得 Flink CDC 项目更中立的同时也带来了短期的不便,因为 Apache 基金会对所属项目的包名、license 有着严格的要求,因此在 Flink CDC 3.1 版本之前版本存在不兼容的情况,我们在此详细说明。当然,后续的 3.2、3.3 版本会与 3.1 版本保持兼容。

Group ID 和 Package 路径变更

如果您正通过 Maven 或 Gradle 声明 Flink CDC 依赖,则需要在升级到 3.1 版本的同时将 Group ID 从 com.ververica.cdc改为 org.apache.flink.cdc,同时更改源代码中 import Package 路径。

用于 Flink SQL 作业的 Flink Source 连接器的重要更改

由于许可证与 Apache 2.0 License 不兼容,我们无法将以下连接器的 JDBC driver 包含在我们的二进制发布包中:

  • Db2
  • MySQL
  • Oracle
  • OceanBase

请手动将相应的 JDBC 驱动程序下载到 Flink 集群的 $FLINK_HOME/lib 目录中,或在使用 --jar 提交 YAML pipeline 时指定驱动程序的路径。如果您在使用 Flink SQL,请确保它们在 classpath 下。

作业 State 兼容性

由于以上不兼容的变更,使用 Flink CDC 3.1 以前版本保存的作业 State 无法在较新版本上恢复。因此,您需要在升级 Flink CDC 版本后进行一次无状态重启。

致谢

衷心感谢以下开发者为 Flink CDC 3.1.0 版本作出的贡献!

Check Null, FocusComputing, GOODBOY008, Hang Ruan, He Wang, Hongshun Wang, Jiabao Sun, Kunni, L, Laffery, Leonard Xu, Muhammet Orazov, Paul Lin, PengFei Li, Qingsheng Ren, Qishang Zhong, Shawn Huang, Thorne, TorinJie, Xianxun Ye, Xin Gong, Yaroslav Tkachenko, e-mhui, gongzhongqiang, joyCurry30, kunni, lzshlzsh, qwding, shikai93, sky, skylines, wenmo, wudi, xleoken, xuzifu666, yanghuaiGit, yuxiqian, 张田

参考链接:

[1] https://nightlies.apache.org/flink/flink-cdc-docs-release-3.1/docs/core-concept/transform/

[2] https://nightlies.apache.org/flink/flink-cdc-docs-release-3.1/docs/core-concept/route/

[3] https://nightlies.apache.org/flink/flink-cdc-docs-release-3.1/docs/connectors/kafka/

[4] https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/formats/canal/

[5] https://nightlies.apache.org/flink/flink-cdc-docs-release-3.1/docs/connectors/paimon/

[6] https://paimon.apache.org/docs/master/flink/cdc-ingestion/mysql-cdc/


更多内容

img


活动推荐

阿里云基于 Apache Flink 构建的企业级产品-实时计算 Flink 版现开启活动:
新用户复制点击下方链接或者扫描二维码即可0元免费试用 Flink + Paimon
实时计算 Flink 版(3000CU*小时,3 个月内)
了解活动详情:https://free.aliyun.com/?pipCode=sc

0CA9E977-9C4C-4444-94B3-F01C0B8C891B.png

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
4月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
712 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
439 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
6月前
|
SQL 人工智能 API
Apache Flink 2.1.0: 面向实时 Data + AI 全面升级,开启智能流处理新纪元
Apache Flink 2.1.0 正式发布,标志着实时数据处理引擎向统一 Data + AI 平台迈进。新版本强化了实时 AI 能力,支持通过 Flink SQL 和 Table API 创建及调用 AI 模型,新增 Model DDL、ML_PREDICT 表值函数等功能,实现端到端的实时 AI 工作流。同时增强了 Flink SQL 的流处理能力,引入 Process Table Functions(PTFs)、Variant 数据类型,优化流式 Join 及状态管理,显著提升作业稳定性与资源利用率。
676 0
|
5月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
1753 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
6月前
|
存储 人工智能 数据处理
对话王峰:Apache Flink 在 AI 时代的“剑锋”所向
Flink 2.0 架构升级实现存算分离,迈向彻底云原生化,支持更大规模状态管理、提升资源效率、增强容灾能力。通过流批一体与 AI 场景融合,推动实时计算向智能化演进。生态项目如 Paimon、Fluss 和 Flink CDC 构建湖流一体架构,实现分钟级时效性与低成本平衡。未来,Flink 将深化 AI Agents 框架,引领事件驱动的智能数据处理新方向。
661 6
|
6月前
|
消息中间件 存储 Kafka
Apache Flink错误处理实战手册:2年生产环境调试经验总结
本文由 Ververica 客户成功经理 Naci Simsek 撰写,基于其在多个行业 Flink 项目中的实战经验,总结了 Apache Flink 生产环境中常见的三大典型问题及其解决方案。内容涵盖 Kafka 连接器迁移导致的状态管理问题、任务槽负载不均问题以及 Kryo 序列化引发的性能陷阱,旨在帮助企业开发者避免常见误区,提升实时流处理系统的稳定性与性能。
568 0
Apache Flink错误处理实战手册:2年生产环境调试经验总结
|
6月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
2535 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
SQL 架构师 API
《Apache Flink 知其然,知其所以然》系列视频课程
# 课程简介 目前在我的公众号新推出了《Apache Flink 知其然,知其所以然》的系列视频课程。在内容上会先对Flink整体架构和所适用的场景做一个基础介绍,让你对Flink有一个整体的认识!然后对核心概念进行详细介绍,让你深入了解流计算中一些核心术语的含义,然后对Flink 各个层面的API,如 SQL/Table&DataStreamAPI/PythonAPI 进行详细的介绍,以及
1591 0
《Apache Flink 知其然,知其所以然》系列视频课程
|
6月前
|
SQL 人工智能 数据挖掘
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
755 9
Apache Flink:从实时数据分析到实时AI
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
871 33
The Past, Present and Future of Apache Flink

热门文章

最新文章

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多