白话Elasticsearch16-深度探秘搜索技术之使用原生cross-fiedls技术解决搜索弊端

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 白话Elasticsearch16-深度探秘搜索技术之使用原生cross-fiedls技术解决搜索弊端

20190806092132811.jpg

概述


继续跟中华石杉老师学习ES,第15篇

课程地址: https://www.roncoo.com/view/55

白话Elasticsearch14-基于multi_match 使用most_fields策略进行cross-fields search弊端

白话Elasticsearch15-使用copy_to定制组合field解决cross-fields搜索弊端

承接上两篇, 接下来看下如何使用原生cross-fiels技术解决搜索的弊端


例子


使用DSL如下,可以解决 "operator": "and",

GET /forum/article/_search
{
  "query": {
    "multi_match": {
      "query": "Peter Smith",
      "type": "cross_fields", 
      "operator": "and",
      "fields": ["author_first_name", "author_last_name"]
    }
  }
}


返回结果:

{
  "took": 3,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 2.3258216,
    "hits": [
      {
        "_index": "forum",
        "_type": "article",
        "_id": "1",
        "_score": 2.3258216,
        "_source": {
          "articleID": "XHDK-A-1293-#fJ3",
          "userID": 1,
          "hidden": false,
          "postDate": "2017-01-01",
          "tag": [
            "java",
            "hadoop"
          ],
          "tag_cnt": 2,
          "view_cnt": 30,
          "title": "this is java and elasticsearch blog",
          "content": "i like to write best elasticsearch article",
          "sub_title": "learning more courses",
          "author_first_name": "Peter",
          "author_last_name": "Smith",
          "new_author_last_name": "Smith",
          "new_author_first_name": "Peter"
        }
      },
      {
        "_index": "forum",
        "_type": "article",
        "_id": "5",
        "_score": 1.7770995,
        "_source": {
          "articleID": "DHJK-B-1395-#Ky5",
          "userID": 3,
          "hidden": false,
          "postDate": "2019-05-01",
          "tag": [
            "elasticsearch"
          ],
          "tag_cnt": 1,
          "view_cnt": 10,
          "title": "this is spark blog",
          "content": "spark is best big data solution based on scala ,an programming language similar to java",
          "sub_title": "haha, hello world",
          "author_first_name": "Tonny",
          "author_last_name": "Peter Smith",
          "new_author_last_name": "Peter Smith",
          "new_author_first_name": "Tonny"
        }
      }
    ]
  }
}


那是如何解决cromss fields的弊端的呢? 我们来分析下


问题1:只是找到尽可能多的field匹配的doc,而不是某个field完全匹配的doc


答: 解决,要求每个term都必须在任何一个field中出现


Peter,Smith


要求Peter必须在author_first_name或author_last_name中出现

要求Smith必须在author_first_name或author_last_name中出现


Peter Smith可能是横跨在多个field中的,所以必须要求每个term都在某个field中出现,组合起来才能组成我们想要的标识,完整的人名


原来most_fiels,可能像Smith Williams也可能会出现,因为most_fields要求只是任何一个field匹配了就可以,匹配的field越多,分数越高


问题2:most_fields,没办法用minimum_should_match去掉长尾数据,就是匹配的特别少的结果 --> 解决,既然每个term都要求出现,长尾肯定被去除掉了

答:java hadoop spark --> 这3个term都必须在任何一个field出现了


比如有的document,只有一个field中包含一个java,那就被干掉了,作为长尾就没了


问题3:TF/IDF算法,比如Peter Smith和Smith Williams,搜索Peter Smith的时候,由于first_name中很少有Smith的,所以query在所有document中的频率很低,得到的分数很高,可能Smith Williams反而会排在Peter Smith前面

答:计算IDF的时候,将每个query在每个field中的IDF都取出来,取最小值,就不会出现极端情况下的极大值了


Peter Smith


Peter

Smith


Smith,在author_first_name这个field中,在所有doc的这个Field中,出现的频率很低,导致IDF分数很高;Smith在所有doc的author_last_name field中的频率算出一个IDF分数,因为一般来说last_name中的Smith频率都较高,所以IDF分数是正常的,不会太高;然后对于Smith来说,会取两个IDF分数中,较小的那个分数。就不会出现IDF分过高的情况。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
1月前
|
存储 自然语言处理 BI
|
30天前
|
存储 运维 监控
Elasticsearch Serverless 高性价比智能日志分析关键技术解读
本文解析了Elasticsearch Serverless在智能日志分析领域的关键技术、优势及应用价值。
Elasticsearch Serverless 高性价比智能日志分析关键技术解读
|
8天前
|
存储 缓存 固态存储
Elasticsearch高性能搜索
【11月更文挑战第1天】
23 6
|
6天前
|
API 索引
Elasticsearch实时搜索
【11月更文挑战第2天】
14 1
|
30天前
|
人工智能
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
172 2
|
1月前
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
171 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
|
2月前
|
存储 缓存 自然语言处理
深度解析ElasticSearch:构建高效搜索与分析的基石
【9月更文挑战第8天】在数据爆炸的时代,如何快速、准确地从海量数据中检索出有价值的信息成为了企业面临的重要挑战。ElasticSearch,作为一款基于Lucene的开源分布式搜索和分析引擎,凭借其强大的实时搜索、分析和扩展能力,成为了众多企业的首选。本文将深入解析ElasticSearch的核心原理、架构设计及优化实践,帮助读者全面理解这一强大的工具。
173 7
|
1月前
|
消息中间件 监控 关系型数据库
MySQL数据实时同步到Elasticsearch:技术深度解析与实践分享
在当今的数据驱动时代,实时数据同步成为许多应用系统的核心需求之一。MySQL作为关系型数据库的代表,以其强大的事务处理能力和数据完整性保障,广泛应用于各种业务场景中。然而,随着数据量的增长和查询复杂度的提升,单一依赖MySQL进行高效的数据检索和分析变得日益困难。这时,Elasticsearch(简称ES)以其卓越的搜索性能、灵活的数据模式以及强大的可扩展性,成为处理复杂查询需求的理想选择。本文将深入探讨MySQL数据实时同步到Elasticsearch的技术实现与最佳实践。
74 0
|
2月前
|
JSON 监控 Java
Elasticsearch 入门:搭建高性能搜索集群
【9月更文第2天】Elasticsearch 是一个分布式的、RESTful 风格的搜索和分析引擎,基于 Apache Lucene 构建。它能够处理大量的数据,提供快速的搜索响应。本教程将指导你如何从零开始搭建一个基本的 Elasticsearch 集群,并演示如何进行简单的索引和查询操作。
203 3
|
3月前
|
存储 人工智能 安全
保障隐私的Elasticsearch AI搜索解决方案
【8月更文第28天】随着大数据和人工智能技术的发展,搜索引擎在日常生活中扮演着越来越重要的角色。然而,用户隐私保护成为了一个不容忽视的问题。本文将探讨如何在确保用户数据隐私的同时,利用Elasticsearch实现智能搜索功能。我们将介绍一种综合方案,该方案结合了加密技术、差分隐私、匿名化处理以及安全多方计算等方法,以保障用户数据的安全性
159 0