一定要「分词」吗?Andrej Karpathy:是时候抛弃这个历史包袱了(1)

简介: 一定要「分词」吗?Andrej Karpathy:是时候抛弃这个历史包袱了


是时候抛弃 tokenization 了?


ChatGPT 等对话 AI 的出现让人们习惯了这样一件事情:输入一段文本、代码或一张图片,对话机器人就能给出你想要的答案。但在这种简单的交互方式背后,AI 模型要进行非常复杂的数据处理和运算,tokenization 就是比较常见的一种。

在自然语言处理领域,tokenization 指的是将文本输入分割成更小的单元,称为「token」。这些 token 可以是词、子词或字符,取决于具体的分词策略和任务需求。例如,如果对句子「我喜欢吃苹果」执行 tokenization 操作,我们将得到一串 token 序列:["我", "喜欢", "吃", "苹果"]。有人将 tokenization 翻译成「分词」,但也有人认为这种翻译会引起误导,毕竟分割后的 token 未必是我们日常所理解的「词」。

图源:https://towardsdatascience.com/dynamic-word-tokenization-with-regex-tokenizer-801ae839d1cd

Tokenization 的目的是将输入数据转换成计算机可以处理的形式,并为后续的模型训练和分析提供一种结构化的表示方式。这种方式为深度学习研究带来了便利,但同时也带来了很多麻烦。前段时间刚加入 OpenAI 的 Andrej Karpathy 指出了其中几种。

首先,Karpathy 认为,Tokenization 引入了复杂性:通过使用 tokenization,语言模型并不是完全的端到端模型。它需要一个独立的阶段进行 tokenization,该阶段有自己的训练和推理过程,并需要额外的库。这增加了引入其他模态数据的复杂性。


此外,tokenization 还会在某些场景下让模型变得很容易出错,比如在使用文本补全 API 时,如果你的 prompt 以空格结尾,你得到的结果可能大相径庭。

图源:https://blog.scottlogic.com/2021/08/31/a-primer-on-the-openai-api-1.html

再比如,因为 tokenization 的存在,强大的 ChatGPT 竟然不会将单词反过来写(以下测试结果来自 GPT 3.5)。


这样的例子可能还有很多。Karpathy 认为,要解决这些问题,我们首先要抛弃 tokenization。

Meta AI 发表的一篇新论文探讨了这个问题。具体来说,他们提出了一种名为「 MEGABYTE」的多尺度解码器架构,可以对超过一百万字节的序列进行端到端可微建模。


论文链接:https://arxiv.org/pdf/2305.07185.pdf

重要的是,该论文展现出了抛弃 tokenization 的可行性,被 Karpathy 评价为「很有前途(Promising)」。

以下是论文的详细信息。

论文概览

在 机器学习的文章 中讲过,机器学习之所以看上去可以解决很多复杂的问题,是因为它把这些问题都转化为了数学问题。


而 NLP 也是相同的思路,文本都是一些「非结构化数据」,我们需要先将这些数据转化为「结构化数据」,结构化数据就可以转化为数学问题了,而分词就是转化的第一步。

由于自注意力机制和大型前馈网络的成本都比较高,大型 transformer 解码器 (LLM) 通常只使用数千个上下文 token。这严重限制了可以应用 LLM 的任务集。

基于此,来自 Meta AI 的研究者提出了一种对长字节序列进行建模的新方法 ——MEGABYTE。该方法将字节序列分割成固定大小的 patch,和 token 类似。

MEGABYTE 模型由三部分组成:

  1. patch 嵌入器,它通过无损地连接每个字节的嵌入来简单地编码 patch;
  2. 全局模块 —— 带有输入和输出 patch 表征的大型自回归 transformer;
  3. 局部模块 —— 一个小型自回归模型,可预测 patch 中的字节。


至关重要的是,该研究发现对许多任务来说,大多数字节都相对容易预测(例如,完成给定前几个字符的单词),这意味着没有必要对每个字节都使用大型神经网络,而是可以使用小得多的模型进行 intra-patch 建模。


MEGABYTE 架构对长序列建模的 Transformer 进行了三项主要改进:

1. sub-quadratic 自注意力。大多数关于长序列模型的工作都集中在减少自注意力的二次成本上。通过将长序列分解为两个较短的序列和最佳 patch 大小,MEGABYTE 将自注意力机制的成本降低到,即使是长序列也能易于处理。


2. per-patch 前馈层。在 GPT-3 等超大模型中,超过 98% 的 FLOPS 用于计算 position-wise 前馈层。MEGABYTE 通过给 per-patch(而不是 per-position)使用大型前馈层,在相同的成本下实现了更大、更具表现力的模型。在 patch 大小为 P 的情况下,基线 transformer 将使用具有 m 个参数的相同前馈层 P 次,而 MEGABYTE 仅需以相同的成本使用具有 mP 个参数的层一次。

3. 并行解码。transformer 必须在生成期间串行执行所有计算,因为每个时间步的输入是前一个时间步的输出。通过并行生成 patch 的表征,MEGABYTE 在生成过程中实现了更大的并行性。例如,具有 1.5B 参数的 MEGABYTE 模型生成序列的速度比标准的 350M 参数 transformer 快 40%,同时在使用相同的计算进行训练时还改善了困惑度(perplexity)。

总的来说,MEGABYTE 让我们能够以相同的计算预算训练更大、性能更好的模型,将能够处理非常长的序列,并提高部署期间的生成速度。

MEGABYTE 还与现有的自回归模型形成鲜明对比,后者通常使用某种形式的 tokenization,其中字节序列被映射成更大的离散 token(Sennrich et al., 2015; Ramesh et al., 2021; Hsu et al., 2021) 。tokenization 使预处理、多模态建模和迁移到新领域变得复杂,同时隐藏了模型中有用的结构。这意味着大多数 SOTA 模型并不是真正的端到端模型。最广泛使用的 tokenization 方法需要使用特定于语言的启发式方法(Radford et al., 2019)或丢失信息(Ramesh et al., 2021)。因此,用高效和高性能的字节模型代替 tokenization 将具有许多优势。

该研究对 MEGABYTE 和一些强大的基线模型进行了实验。实验结果表明,MEGABYTE 在长上下文语言建模上的性能可与子词模型媲美,并在 ImageNet 上实现了 SOTA 的密度估计困惑度,并允许从原始音频文件进行音频建模。这些实验结果证明了大规模无 tokenization 自回归序列建模的可行性。

MEGABYTE 主要组成部分


patch 嵌入器

大小为 P 的 patch 嵌入器能够将字节序列映射成一个长度为、维度为 patch 嵌入序列。



首先,每个字节都嵌入了一个查找表,形成一个大小为 D_G 的嵌入,并添加了位置嵌入。



然后,字节嵌入被重塑成维度为的 K 个 patch 嵌入的序列。为了允许自回归建模,该 patch 序列被填充以从可训练的 patch 大小的填充嵌入(,然后从输入中移除最后一个 patch。该序列是全局模型的输入,表示为


全局模块

全局模块是一个 decoder-only 架构的 P・D_G 维 transformer 模型,它在 k 个 patch 序列上进行操作。全局模块结合自注意力机制和因果掩码来捕获 patch 之间的依赖性。全局模块输入 k 个 patch 序列的表示,并通过对先前 patch 执行自注意力来输出更新的表示



最终全局模块的输出包含 P・D_G 维的 K 个 patch 表示。对于其中的每一个,研究者将它们重塑维长度为 P、维度为 D_G 的序列,其中位置 p 使用维度 p・D_G to (p + 1)・D_G。然后将每个位置映射到具有矩阵的局部模块维度,其中 D_L 为局部模块维度。接着将这些与大小为 D_L 的字节嵌入相结合,用于下一个的 token。


局部字节嵌入通过可训练的局部填充嵌入(E^local-pad ∈ R^DL)偏移 1,从而允许在 path 中进行自回归建模。最终得到张量


局部模块

局部模块是一个较小的、decoder-only 架构的 D_L 维 transformer 模型,它在包含 P 个元素的单个 patch k 上运行,每个元素又是一个全局模块输出和序列中前一个字节的嵌入的总和。K 个局部模块副本在每个 patch 上独立运行,并在训练时并行运行,从而计算表示



最后,研究者可以计算每个位置的词汇概率分布。第 k 个 patch 的第 p 个元素对应于完整序列的元素 t,其中 t = k・P + p。


相关文章
|
3月前
|
人工智能 Rust Kubernetes
开源11天,马斯克再发Grok-1.5!128K代码击败GPT-4
**马斯克的xAI发布Grok-1.5,超越GPT-4!**\n\nGrok-1.5以128K上下文长度提升文本理解,强化推理能力,在MATH与GSM8K数学测试中展现出色性能,HumanEval代码任务得分74.1%。基于JAX、Rust和Kubernetes的训练框架加速了研发,但更大规模带来资源需求挑战。开源策略促进发展,但也引出滥用与安全问题。
211 3
开源11天,马斯克再发Grok-1.5!128K代码击败GPT-4
|
2月前
|
人工智能
GPT-4被证实具有人类心智登Nature!AI比人类更好察觉讽刺和暗示
【6月更文挑战第5天】Nature发表的论文显示,GPT-4在心智理论任务中表现出色,特别是在识别讽刺上超越了人类。然而,在理解失礼行为和相关社会意识方面,GPT-4逊于人类,而LLaMA2-Chat在此类情境中表现更佳。尽管如此,GPT-4在失礼行为可能性测试中展现出高超的理解力。该研究强调了AI在模拟人类心理状态方面的进步与局限性。[链接](https://www.nature.com/articles/s41562-024-01882-z)
56 1
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
谷歌工程师Alex Irpan:2028年有10%概率实现AGI
【2月更文挑战第20天】谷歌工程师Alex Irpan:2028年有10%概率实现AGI
55 6
谷歌工程师Alex Irpan:2028年有10%概率实现AGI
|
3月前
|
数据采集 人工智能 算法
【话题文章】人性与机器:解码大型语言模型的‘幻觉’现象
【话题文章】人性与机器:解码大型语言模型的‘幻觉’现象
102 2
|
人工智能 PyTorch 算法框架/工具
OpenAI联创Karpathy爱上羊驼:纯C代码实现婴儿Llama2,MacBook可运行,已揽1.6k星
OpenAI联创Karpathy爱上羊驼:纯C代码实现婴儿Llama2,MacBook可运行,已揽1.6k星
411 0
|
机器学习/深度学习 存储 人工智能
7 Papers | GPT-4等大模型自己制作工具;识别ChatGPT造假
7 Papers | GPT-4等大模型自己制作工具;识别ChatGPT造假
171 0
|
编解码 自然语言处理 计算机视觉
一定要「分词」吗?Andrej Karpathy:是时候抛弃这个历史包袱了(2)
一定要「分词」吗?Andrej Karpathy:是时候抛弃这个历史包袱了
|
机器学习/深度学习 自然语言处理 算法
论文赏析【EMNLP19】语言模型效果不好?也许你可以给它添加一点句法信息
论文赏析【EMNLP19】语言模型效果不好?也许你可以给它添加一点句法信息
|
人工智能 编解码 自然语言处理
7 Papers & Radios | 爆火论文打造《西部世界》雏形;OpenAI终结扩散模型
7 Papers & Radios | 爆火论文打造《西部世界》雏形;OpenAI终结扩散模型
126 0
|
索引
白话Elasticsearch27-深度探秘搜索技术之误拼写时的fuzzy模糊搜索技术
白话Elasticsearch27-深度探秘搜索技术之误拼写时的fuzzy模糊搜索技术
60 0