白话Elasticsearch27-深度探秘搜索技术之误拼写时的fuzzy模糊搜索技术

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 白话Elasticsearch27-深度探秘搜索技术之误拼写时的fuzzy模糊搜索技术

20190806092132811.jpg


概述

继续跟中华石杉老师学习ES,第27篇

课程地址: https://www.roncoo.com/view/55


官方指导


https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-fuzzy-query.html

20190806234241704.png

20190806234307322.png

20190806234317533.png

官方Blog : https://www.elastic.co/blog/found-fuzzy-search 强烈推荐


例子

我们知道,搜索的时候,可能输入的搜索文本会出现误拼写的情况。 举个例子 如下两个doc

doc1: hello world
doc2: hello java

我们本来是想搜索hello world ,结果手误输成了hallo world ?怎么办呢 ,还能继续搜索hello world吗?

fuzzy搜索技术 --> 自动将拼写错误的搜索文本,进行纠正,纠正以后去尝试匹配索引中的数据

实例 如下:

模拟一批数据 
POST /my_index/my_type/_bulk
{ "index": { "_id": 1 }}
{ "text": "Surprise me!"}
{ "index": { "_id": 2 }}
{ "text": "That was surprising."}
{ "index": { "_id": 3 }}
{ "text": "I wasn't surprised."}

查询

GET /my_index/my_type/_search 
{
  "query": {
    "fuzzy": {
      "text": {
        "value": "surprize",
        "fuzziness": 2
      }
    }
  }
}


返回结果:

20190806234752333.png

,让我们来分析下


surprize --> 拼写错误 --> surprise --> s -> z


surprize --> surprise -> z -> s,纠正一个字母,就可以匹配上,所以在fuziness指定的2范围内


surprize --> surprised -> z -> s,末尾加个d,纠正了2次,也可以匹配上,在fuziness指定的2范围内


surprize --> surprising -> z -> s,去掉e,ing,3次,总共要5次,才可以匹配上,始终纠正不了


fuzzy搜索以后,会自动尝试将你的搜索文本进行纠错,然后去跟文本进行匹配

fuzziness,你的搜索文本最多可以纠正几个字母去跟你的数据进行匹配,默认如果不设置,就是2


推荐写法


一般不用上面的那种写法,常用写法如下:

GET /my_index/my_type/_search 
{
  "query": {
    "match": {
      "text": {
        "query": "SURPIZE ME",
        "fuzziness": "AUTO",
        "operator": "and"
      }
    }
  }
}

返回结果:


20190806234953657.png

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
1月前
|
存储 自然语言处理 BI
|
1月前
|
存储 运维 监控
Elasticsearch Serverless 高性价比智能日志分析关键技术解读
本文解析了Elasticsearch Serverless在智能日志分析领域的关键技术、优势及应用价值。
Elasticsearch Serverless 高性价比智能日志分析关键技术解读
|
16天前
|
存储 缓存 固态存储
Elasticsearch高性能搜索
【11月更文挑战第1天】
33 6
|
15天前
|
API 索引
Elasticsearch实时搜索
【11月更文挑战第2天】
30 1
|
1月前
|
人工智能
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
172 2
|
1月前
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
191 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
|
3月前
|
人工智能 自然语言处理 搜索推荐
阿里云Elasticsearch AI搜索实践
本文介绍了阿里云 Elasticsearch 在AI 搜索方面的技术实践与探索。
19158 21
|
2月前
|
存储 缓存 自然语言处理
深度解析ElasticSearch:构建高效搜索与分析的基石
【9月更文挑战第8天】在数据爆炸的时代,如何快速、准确地从海量数据中检索出有价值的信息成为了企业面临的重要挑战。ElasticSearch,作为一款基于Lucene的开源分布式搜索和分析引擎,凭借其强大的实时搜索、分析和扩展能力,成为了众多企业的首选。本文将深入解析ElasticSearch的核心原理、架构设计及优化实践,帮助读者全面理解这一强大的工具。
192 7
|
1月前
|
消息中间件 监控 关系型数据库
MySQL数据实时同步到Elasticsearch:技术深度解析与实践分享
在当今的数据驱动时代,实时数据同步成为许多应用系统的核心需求之一。MySQL作为关系型数据库的代表,以其强大的事务处理能力和数据完整性保障,广泛应用于各种业务场景中。然而,随着数据量的增长和查询复杂度的提升,单一依赖MySQL进行高效的数据检索和分析变得日益困难。这时,Elasticsearch(简称ES)以其卓越的搜索性能、灵活的数据模式以及强大的可扩展性,成为处理复杂查询需求的理想选择。本文将深入探讨MySQL数据实时同步到Elasticsearch的技术实现与最佳实践。
100 0
|
2月前
|
JSON 监控 Java
Elasticsearch 入门:搭建高性能搜索集群
【9月更文第2天】Elasticsearch 是一个分布式的、RESTful 风格的搜索和分析引擎,基于 Apache Lucene 构建。它能够处理大量的数据,提供快速的搜索响应。本教程将指导你如何从零开始搭建一个基本的 Elasticsearch 集群,并演示如何进行简单的索引和查询操作。
223 3
下一篇
无影云桌面