3D检测难点 | 3D检测如何解决远处小目标问题?Deformable PV-RCNN 或是个答案!

简介: 3D检测难点 | 3D检测如何解决远处小目标问题?Deformable PV-RCNN 或是个答案!

本文提出了 Deformable PV-RCNN,一种基于点云的高性能 3D 目标检测器。目前,最先进的两阶段检测器使用的proposal细化方法不能充分适应不同尺度的目标对象、不同的点云密度、部分变形和杂波。作者提出了一个受 2D 可变形卷积网络启发的proposal细化模块,该模块可以从存在信息内容的位置自适应地收集特定于实例的特征。作者还提出了一种简单的上下文门控机制,允许关键点为细化阶段选择相关的上下文信息。


1、简介


点云的 3D 目标检测对于自动驾驶和机器人技术至关重要。PV-RCNNs 成功的部分原因是随机采样的关键点捕获多尺度特征以进行proposal细化,同时保留细粒度的定位信息。

然而,随机抽样对潜在的模糊场景无效。例如,在点云中很难区分行人和交通杆。在这种情况下,作者希望将关键点对准最具辨别力的区域,以便可以突出显示行人的主要特征。同样,汽车、行人和骑自行车的人的比例也大不相同。虽然多尺度特征聚合有利于图像特征,但点云的非均匀密度使得使用单个模型很难检测到它们。

作者希望自适应地聚合并关注它们在不同尺度上最显著的特征。最后,为了处理混乱并避免误检,例如,为了避免将所有坐着的人检测为骑自行车的人,需要了解分布不均的上下文信息。

本文构建了 Deformable PV-RCNN,这是一种处理 LIDAR 点稀疏性的 3D 检测器,能够适应非均匀点云密度,尤其是在远距离处,并且可以解决现实世界交通场景中的杂波问题。作者表明,本文方法可以在不同类别上优于 PV-RCNN,尤其是在 KITTI 3D 目标检测数据集上的远距离目标。


2、本文方法


image.png3D 检测的Pipeline如图 1 所示。它由Adaptive Deformation module(图 2)和Context Fusion module(图 3)组成。

2.1、Adaptive Deformation

image.png

n 个采样的关键点(在图1中以黄色显示)具有 3D 位置  和对应于 Conv3 或 Conv4 层的特征向量 。Adaptive Deformation模块计算更新的特征  如下:

image.png

其中  给出了点云中第 i 个关键点的邻居和 是一个学习的权重矩阵。然后获得新的deformed keypoint位置为:

image.png

其中  是一个学习的权重矩阵。然后,继续使用类似于 PV-RCNNPointNet++ 计算deformed keypoint的特征。

2.2、Context Fusion

image.png

该模块使用上下文门控从local evidence中动态选择具有代表性和判别性的特征,突出目标特征并抑制clutter。给定一个关键点特征 ,调制特征为:

image.png

上下文门控特征计算为:

image.png

其中 、、 是从数据中学习的。


3、实验


3.1、SOTA对比

image.png

3.2、消融实验

3.3、远距离目标对比


4、参考


[1].Deformable PV-RCNN: Improving 3D Object Detection with Learned Deformations.

相关文章
|
6月前
|
编解码 并行计算 算法
除了NMS参数,还有哪些因素会影响YOLOv3模型的检测性能?
除了NMS参数,还有哪些因素会影响YOLOv3模型的检测性能?
|
6月前
|
机器学习/深度学习 网络架构 计算机视觉
YOLOv5改进 | 检测头篇 | 利用DBB重参数化模块魔改检测头实现暴力涨点 (附代码 + 详细修改教程)
YOLOv5改进 | 检测头篇 | 利用DBB重参数化模块魔改检测头实现暴力涨点 (附代码 + 详细修改教程)
318 3
|
6月前
|
计算机视觉
YOLOv5改进 | 2023检测头篇 | 利用AFPN增加小目标检测层(让小目标无所遁形)
YOLOv5改进 | 2023检测头篇 | 利用AFPN增加小目标检测层(让小目标无所遁形)
287 0
|
6月前
|
机器学习/深度学习 文字识别 算法
[Halcon&图像] 缺陷检测的一些思路、常规检测算法
[Halcon&图像] 缺陷检测的一些思路、常规检测算法
1955 1
|
5月前
|
机器学习/深度学习 存储 算法
深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数(2)
深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数
|
5月前
|
机器学习/深度学习 计算机视觉 Python
深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数(3)
深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数
|
5月前
|
机器学习/深度学习 算法 Python
YOLOV5应用实战项目:钢材表面缺陷检测(数据集:NEU-CLS)笔记
YOLOV5应用实战项目:钢材表面缺陷检测(数据集:NEU-CLS)笔记
|
5月前
|
机器学习/深度学习 编解码 监控
深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数(1)
深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数
|
6月前
|
计算机视觉
YOLOv8改进 | 2023检测头篇 | 利用AFPN增加小目标检测层(让小目标无所遁形)
YOLOv8改进 | 2023检测头篇 | 利用AFPN增加小目标检测层(让小目标无所遁形)
389 0
|
6月前
|
计算机视觉 异构计算 Python
YOLOv8改进 | 进阶实战篇 | 利用YOLOv8进行视频划定区域目标统计计数
YOLOv8改进 | 进阶实战篇 | 利用YOLOv8进行视频划定区域目标统计计数
299 0