YOLOv5改进 | 2023检测头篇 | 利用AFPN增加小目标检测层(让小目标无所遁形)

简介: YOLOv5改进 | 2023检测头篇 | 利用AFPN增加小目标检测层(让小目标无所遁形)

一、本文介绍

本文给大家带来的改进机制是利用今年新推出的AFPN(渐近特征金字塔网络)来优化检测头,AFPN的核心思想是通过引入一种渐近的特征融合策略,将底层、高层和顶层的特征逐渐整合到目标检测过程中。这种渐近融合方式有助于减小不同层次特征之间的语义差距,提高特征融合效果,使得检测模型能更好地适应不同层次的语义信息。之前答应大家说出一个四头版本的Detect_FPN本文就是该检测头,利用该检测头实现暴力涨点,让小目标无所遁形,同时该机制改完之后参数量仅有210w。同时欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。

image.png

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

二、AFPN基本框架原理

image.png

AFPN的核心思想是通过引入一种渐近的特征融合策略,将底层、高层和顶层的特征逐渐整合到目标检测过程中。这种渐近融合方式有助于减小不同层次特征之间的语义差距,提高特征融合效果,使得检测模型能更好地适应不同层次的语义信息。

主要改进机制: 1. 底层特征融合: AFPN通过引入底层特征的逐步融合,首先融合底层特征,接着深层特征,最后整合顶层特征。这种层级融合的方式有助于更好地利用不同层次的语义信息,提高检测性能。

2. 自适应空间融合: 引入自适应空间融合机制(ASFF),在多级特征融合过程中引入变化的空间权重,加强关键级别的重要性,同时抑制来自不同对象的矛盾信息的影响。这有助于提高检测性能,尤其在处理矛盾信息时更为有效。

3. 底层特征对齐: AFPN采用渐近融合的思想,使得不同层次的特征在融合过程中逐渐接近,减小它们之间的语义差距。通过底层特征的逐步整合,提高了特征融合的效果,使得模型更能理解和利用不同层次的信息。

个人总结:AFPN的灵感就像是搭积木一样,它不是一下子把所有的积木都放到一起,而是逐步地将不同层次的积木慢慢整合在一起。这样一来,我们可以更好地理解和利用每一层次的积木,从而构建一个更牢固的目标检测系统。同时,引入了一种智能的机制,能够根据不同情况调整注意力,更好地处理矛盾信息。

image.png

上面是AFPN的网络结构,可以看出从Backbone中提取出特征之后,将特征输入到AFPN中进行处理,然后它可以获得不同层级的特征进行融合,这也是它的主要思想之一,同时将结果输入到检测头中进行预测。

目录
相关文章
|
7月前
|
编解码 并行计算 算法
除了NMS参数,还有哪些因素会影响YOLOv3模型的检测性能?
除了NMS参数,还有哪些因素会影响YOLOv3模型的检测性能?
|
7月前
|
机器学习/深度学习 网络架构 计算机视觉
YOLOv5改进 | 检测头篇 | 利用DBB重参数化模块魔改检测头实现暴力涨点 (附代码 + 详细修改教程)
YOLOv5改进 | 检测头篇 | 利用DBB重参数化模块魔改检测头实现暴力涨点 (附代码 + 详细修改教程)
355 3
|
1月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
|
5月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进- Backbone主干】YOLOv8更换主干网络之ConvNexts,纯卷积神经网络,更快更准,,降低参数量!
YOLOv8专栏探讨了针对目标检测的ConvNet创新,提出ConvNeXt模型,它挑战Transformer在视觉任务中的主导地位。ConvNeXt通过增大卷积核、使用GeLU激活、切换到LayerNorm和改进下采样层,提升了纯ConvNet性能,达到与Transformer相当的准确率和效率。论文和代码已公开。
|
5月前
|
机器学习/深度学习 人工智能 计算机视觉
【YOLOv8改进 - 注意力机制】HCF-Net 之 MDCR:多稀释通道细化器模块 ,以不同的稀释率捕捉各种感受野大小的空间特征 | 小目标
HCF-Net是针对红外小目标检测的深度学习模型,采用U-Net改进架构,包含PPA、DASI和MDCR模块。PPA利用多分支特征提取增强小目标表示,DASI实现自适应通道融合,MDCR通过多扩张率深度可分离卷积细化空间特征。实验显示,HCF-Net在SIRST数据集上表现出色,超越其他方法。代码和论文可在给出的链接获取。
|
6月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv8改进 | 注意力机制 | 用于增强小目标感受野的RFEM
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡
|
7月前
|
机器学习/深度学习 编解码 算法
YOLOv8改进 | 主干网络 | 增加网络结构增强小目标检测能力【独家创新——附结构图】
YOLOv8在小目标检测上存在挑战,因卷积导致信息丢失。本文教程将原网络结构替换为更适合小目标检测的backbone,并提供结构图。通过讲解原理和手把手教学,指导如何修改代码,提供完整代码实现,适合新手实践。文章探讨了大特征图对小目标检测的重要性,如细节保留、定位精度、特征丰富度和上下文信息,并介绍了FPN等方法。YOLOv8流程包括预处理、特征提取、融合和检测。修改后的网络结构增加了上采样和concatenate步骤,以利用更大特征图检测小目标。完整代码和修改后的结构图可在文中链接获取。
|
7月前
|
机器学习/深度学习 数据挖掘 测试技术
DETR即插即用 | RefineBox进一步细化DETR家族的检测框,无痛涨点
DETR即插即用 | RefineBox进一步细化DETR家族的检测框,无痛涨点
399 1
|
7月前
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | 2023 | SCConv空间和通道重构卷积(精细化检测,又轻量又提点)
YOLOv5改进 | 2023 | SCConv空间和通道重构卷积(精细化检测,又轻量又提点)
226 1
|
7月前
|
计算机视觉
YOLOv8改进 | 2023检测头篇 | 利用AFPN增加小目标检测层(让小目标无所遁形)
YOLOv8改进 | 2023检测头篇 | 利用AFPN增加小目标检测层(让小目标无所遁形)
408 0