加速体细胞突变检测分析流程-系列2(ctDNA等高深度样本)

简介: 加速体细胞突变检测分析流程-系列2(ctDNA等高深度样本)

Sentieon●体细胞变异检测-系列2

Sentieon 致力于解决生物信息数据分析中的速度与准确度瓶颈,通过算法的深度优化和企业级的软件工程,大幅度提升NGS数据处理的效率、准确度和可靠性。

针对体细胞变异检测,Sentieon软件提供两个模块:TNscope和TNhaplotyer2。

TNscope:此模块使用Sentieon特有的算法,拥有更快的计算速度(提速10倍+)和更高的计算精度,对临床基因诊断样本尤其适用;

TNhaplotyper2:此模块匹配Mutect2(现在匹配到4.1.9)结果的同时,计算速度提升10倍以上。
4.png
5.png

ctDNA变异检测分析

以下给出的步骤脚本,主要针对ctDNA和其他高深度测序的样本数据(2000-5000x depth, AF > 0.3%)

第一步:Alignment

# ****************************************** 
# 1a. Mapping reads with BWA-MEM, sorting for tumor sample 
# ****************************************** 
( sentieon bwa mem -M -R "@RG\tID:$tumor\tSM:$tumor\tPL:$platform" \
-t $nt -K 10000000 $fasta $tumor_fastq_1 $tumor_fastq_2 || \
echo -n 'error' ) | \
sentieon util sort -o tumor_sorted.bam -t $nt --sam2bam -i -

# ****************************************** 
# 1b. Mapping reads with BWA-MEM, sorting for normal sample 
# ****************************************** 
( sentieon bwa mem -M -R "@RG\tID:$normal\tSM:$normal\tPL:$platform" \
-t $nt -K 10000000 $fasta $normal_fastq_1 $normal_fastq_2 || 
echo -n 'error' ) | \
sentieon util sort -o normal_sorted.bam -t $nt --sam2bam -i -

第二步:PCR Duplicate Removal (Skip For Amplicon)

# ****************************************** 
# 2a. Remove duplicate reads for tumor sample. 
# ****************************************** 
# ******************************************  
sentieon driver -t $nt -i tumor_sorted.bam \
      --algo LocusCollector \
      --fun score_info \ tumor_score.txt sentieon driver -t $nt -i tumor_sorted.bam \
      --algo Dedup \
      --score_info tumor_score.txt \
      --metrics tumor_dedup_metrics.txt \ tumor_deduped.bam
# ****************************************** 
# 2b. Remove duplicate reads for normal sample. 
# ****************************************** 
sentieon driver -t $nt -i normal_sorted.bam \
     --algo LocusCollector \
     --fun score_info \ normal_score.txt sentieon driver -t $nt -i normal_sorted.bam \
     --algo Dedup \
     --score_info normal_score.txt \
     --metrics normal_dedup_metrics.txt \ normal_deduped.bam

第三步: Base Quality Score Recalibration (Skip For Small Panel)

# ****************************************** 
# 3a. Base recalibration for tumor sample
# ******************************************
sentieon driver -r $fasta -t $nt -i tumor_deduped.bam --interval $BED \
    --algo QualCal \
    -k $dbsnp \
    -k $known_Mills_indels \
    -k $known_1000G_indels \ tumor_recal_data.table
# ****************************************** 
# 3b. Base recalibration for normal sample 
# ****************************************** 
sentieon driver -r $fasta -t $nt -i normal_deduped.bam --interval $BED \
     --algo QualCal \
     -k $dbsnp \
     -k $known_Mills_indels \
     -k $known_1000G_indels \ 
     normal_recal_data.table

第四步:Variant Calling

sentieon driver -r $fasta -t $nt -i tumor_deduped.bam -i normal_deduped.bam --interval $BED -interval_padding 10\ 
    --algo TNscope \
    --tumor_sample $TUMOR_SM \
    --normal_sample $NORMAL_SM \
    --dbsnp $dbsnp \
    --sv_mask_ext 10 \
    --max_fisher_pv_active 0.05 \
    --min_tumor_allele_frac 0.01 \
    --filter_t_alt_frac 0.01 \
    --max_normal_alt_frac 0.005 \
    --max_normal_alt_qsum 200 \
    --max_normal_alt_cnt 5 \
    --assemble_mode 4 \
    [--pon panel_of_normal.vcf \] 
    output_tnscope.pre_filter.vcf.gz

第五步:Variant Filtration

bcftools annotate -x "FILTER/triallelic_site" output_tnscope.pre_filter.vcf.gz | \ 
   bcftools filter -m + -s "low_qual" -e "QUAL < 10" | \ 
   bcftools filter -m + -s "short_tandem_repeat" -e "RPA[0]>=10" | \ 
   bcftools filter -m + -s "read_pos_bias" -e "FMT/ReadPosRankSumPS[0] < -5" | \
   bcftools norm -f $fasta -m +any | \ 
sentieon util vcfconvert - output_tnscope.filtered.vcf.gz

Sentieon软件介绍

Sentieon为完整的纯软件基因变异检测二级分析方案,其分析流程完全忠于BWA、GATK、MuTect2、STAR、Minimap2、Fgbio、picard等金标准的数学模型。在匹配开源流程分析结果的前提下,大幅提升WGS、WES、Panel、UMI、ctDNA、RNA等测序数据的分析效率和检出精度,并匹配目前全部第二代、三代测序平台。
640.png

Sentieon软件团队拥有丰富的软件开发及算法优化工程经验,致力于解决生物数据分析中的速度与准确度瓶颈,为来自于分子诊断、药物研发、临床医疗、人群队列、动植物等多个领域的合作伙伴提供高效精准的软件解决方案,共同推动基因技术的发展。

截至2023年3月份,Sentieon已经在全球范围内为1300+用户提供服务,被世界一级影响因子刊物如NEJM、Cell、Nature等广泛引用,引用次数超过700篇。此外,Sentieon连续数年摘得了Precision FDA、Dream Challenges等多个权威评比的桂冠,在业内获得广泛认可。

软件试用:https://www.insvast.com/sentieon

目录
相关文章
|
6月前
|
机器学习/深度学习 传感器 自动驾驶
狂风暴雨依旧YOLO | 全新数据集,全新任务,促进极端降雨条件下目标检测的优化和发展
狂风暴雨依旧YOLO | 全新数据集,全新任务,促进极端降雨条件下目标检测的优化和发展
234 0
|
3月前
|
机器学习/深度学习 人工智能 编解码
无限生成视频,还能规划决策,扩散强制整合下一token预测与全序列扩散
【8月更文挑战第15天】在AI领域,新训练范式“扩散强制”(DF)为序列生成模型带来革新。DF通过独立噪声级去噪token,实现稳定且可变长度的序列生成,支持引导生成高价值序列。其核心机制使模型学习揭露不同噪声级别的token。在视频预测等领域,DF展现出生成长序列的一致性及通过蒙特卡洛树引导提高决策质量的能力。理论与实证均验证了DF的有效性,尽管现有实现受限于小型RNN,未来有望拓展至更大模型与数据集。[论文](https://arxiv.org/pdf/2407.01392)
41 1
|
4月前
|
机器学习/深度学习 搜索推荐 知识图谱
图神经网络加持,突破传统推荐系统局限!北大港大联合提出SelfGNN:有效降低信息过载与数据噪声影响
【7月更文挑战第22天】北大港大联手打造SelfGNN,一种结合图神经网络与自监督学习的推荐系统,专攻信息过载及数据噪声难题。SelfGNN通过短期图捕获实时用户兴趣,利用自增强学习提升模型鲁棒性,实现多时间尺度动态行为建模,大幅优化推荐准确度与时效性。经四大真实数据集测试,SelfGNN在准确性和抗噪能力上超越现有模型。尽管如此,高计算复杂度及对图构建质量的依赖仍是待克服挑战。[详细论文](https://arxiv.org/abs/2405.20878)。
80 5
|
4月前
|
机器学习/深度学习 运维 算法
Doping:使用精心设计的合成数据测试和评估异常检测器的技术
在这篇文章中,我们将探讨测试和评估异常检测器的问题(这是一个众所周知的难题),并提出了一种解决方案被称为“Doping”方法。使用Doping方法,真实数据行会被(通常是)随机修改,修改的方式是确保它们在某些方面可能成为异常值,这时应该被异常检测器检测到。然后通过评估检测器检测Doping记录的效果来评估这些检测器。
51 0
|
6月前
|
机器学习/深度学习 前端开发 数据挖掘
工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断(下)
工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断
433 11
|
6月前
|
机器学习/深度学习 数据可视化
数据分享|R语言生存分析模型因果分析:非参数估计、IP加权风险模型、结构嵌套加速失效(AFT)模型分析流行病学随访研究数据
数据分享|R语言生存分析模型因果分析:非参数估计、IP加权风险模型、结构嵌套加速失效(AFT)模型分析流行病学随访研究数据
|
6月前
|
机器学习/深度学习 编解码 人工智能
什么样才算好图——从生图模型质量度量方法看模型能力的发展(下)
什么样才算好图——从生图模型质量度量方法看模型能力的发展(下)
285 1
|
6月前
|
机器学习/深度学习 数据采集 计算机视觉
什么样才算好图——从生图模型质量度量方法看模型能力的发展(上)
什么样才算好图——从生图模型质量度量方法看模型能力的发展
175 1
|
6月前
R语言估计多元标记的潜过程混合效应模型(lcmm)分析心理测试的认知过程
R语言估计多元标记的潜过程混合效应模型(lcmm)分析心理测试的认知过程
|
6月前
|
机器学习/深度学习
工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断1
工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断