带你读《达摩院智能客服知识运营白皮书》——3.5 如何进行问答引擎的选择?

简介: 带你读《达摩院智能客服知识运营白皮书》——3.5 如何进行问答引擎的选择?

3.5 如何进行问答引擎的选择?


上文说到,智能客服体系下不同的知识适配于不同的算法引擎,高效的智能客服系统通常由多个算法引擎来组成,经过提炼和梳理的知识,需要匹配对应的算法引擎从而产生最佳的使用效果,实际业务场景中,如何选择引擎也是运营者面临的重要问题,阿里云智能客服基于历史实践提供的参考如下:


image.png

image.png


相关文章
|
4月前
|
机器学习/深度学习 存储 自然语言处理
基于知识库快速搭建智能客服问答 Bot
在数字化转型的大潮中,智能客服系统成为提升企业客户体验与运营效率的关键工具。Botnow平台集成智能体创作与分发功能,提供一站式智能客服问答Bot搭建服务。本文详细介绍了如何利用Botnow的知识库功能及RAG(Retrieve-Augmented Generation)方案快速构建智能客服问答Bot。通过Botnow平台,用户可以轻松创建知识库、配置智能体,并关联知识库以实现智能回答。该方案广泛适用于对话沟通、行业知识库建设、企业内部信息检索及内容创作等多个场景。Botnow平台以其可视化编排、低技术门槛等特点,助力企业轻松实现智能客服系统的搭建与优化,成为数字化转型的重要推手。
248 1
|
7月前
|
自然语言处理 算法 数据库
【JavaScript+自然语言处理+HTML+CSS】实现Web端的智能聊天问答客服实战(附源码 超详细必看)
【JavaScript+自然语言处理+HTML+CSS】实现Web端的智能聊天问答客服实战(附源码 超详细必看)
131 0
|
7月前
|
自然语言处理 算法 Shell
【Rasa+Pycharm+Tensorflow】控制台实现智能客服问答实战(附源码和数据集 超详细)
【Rasa+Pycharm+Tensorflow】控制台实现智能客服问答实战(附源码和数据集 超详细)
183 0
|
自然语言处理 达摩院
带你读《达摩院智能客服知识运营白皮书》——1.2.1 事实性知识
带你读《达摩院智能客服知识运营白皮书》——1.2.1 事实性知识
133 0
带你读《达摩院智能客服知识运营白皮书》——1.2.1 事实性知识
|
人工智能 自然语言处理 达摩院
带你读《达摩院智能客服知识运营白皮书》——概述
带你读《达摩院智能客服知识运营白皮书》——概述
233 0
|
自然语言处理 达摩院
带你读《达摩院智能客服知识运营白皮书》——1.1 布卢姆分类法
带你读《达摩院智能客服知识运营白皮书》——1.1 布卢姆分类法
140 0
|
13天前
|
机器学习/深度学习 自然语言处理 搜索推荐
深度分析 | 2024主流的智能客服系统有哪些?他们是怎么实现的?
本文深入探讨了智能客服系统的使用方法和相关技术实现逻辑,涵盖前端交互、服务接入、逻辑处理、数据存储四大层面,以及自然语言处理、机器学习、语音识别与合成、数据分析与挖掘、知识库管理和智能推荐系统等核心技术,帮助企业更好地理解和应用智能客服系统,提升服务效率和客户满意度。
77 1
|
2月前
|
存储 自然语言处理 机器人
实战揭秘:当RAG遇上企业客服系统——从案例出发剖析Retrieval-Augmented Generation技术的真实表现与应用局限,带你深入了解背后的技术细节与解决方案
【10月更文挑战第3天】随着自然语言处理技术的进步,结合检索与生成能力的RAG技术被广泛应用于多个领域,通过访问外部知识源提升生成内容的准确性和上下文一致性。本文通过具体案例探讨RAG技术的优势与局限,并提供实用建议。例如,一家初创公司利用LangChain框架搭建基于RAG的聊天机器人,以自动化FAQ系统减轻客服团队工作负担。尽管该系统在处理简单问题时表现出色,但在面对复杂或多步骤问题时存在局限。此外,RAG系统的性能高度依赖于训练数据的质量和范围。因此,企业在采用RAG技术时需综合评估需求和技术局限性,合理规划技术栈,并辅以必要的人工干预和监督机制。
165 3
|
23天前
|
存储 人工智能 运维
最新榜单 | 盘点2024年10大主流工单系统
随着互联网的发展,工单系统因其多样化功能和高效管理能力,成为企业运营的重要工具。本文介绍了10大主流工单系统,包括合力亿捷、阿里云服务中台、华为云ROMA ServiceCore等,它们各具特色,帮助企业提升服务质量和运营效率,实现数字化转型。
44 7
|
2月前
|
人工智能 自然语言处理 搜索推荐
AI技术在智能客服系统中的应用与挑战
【9月更文挑战第32天】本文将探讨AI技术在智能客服系统中的应用及其面临的挑战。我们将分析AI技术如何改变传统客服模式,提高服务质量和效率,并讨论在实际应用中可能遇到的问题和解决方案。
327 65