m基于matlab的LDPC译码算法性能仿真,对比BP译码,最小和译码以及归一化偏移最小和译码三种算法

简介: m基于matlab的LDPC译码算法性能仿真,对比BP译码,最小和译码以及归一化偏移最小和译码三种算法

1.算法仿真效果
matlab2022a仿真结果如下:

5774a109e3eec1674897d2ead75e9d5b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
LDPC码是麻省理工学院Robert Gallager于1963年在博士论文中提出的一种具有稀疏校验矩阵的分组纠错码。几乎适用于所有的信道,因此成为编码界近年来的研究热点。它的性能逼近香农极限,且描述和实现简单,易于进行理论分析和研究,译码简单且可实行并行操作,适合硬件实现。

    LDPC仿真系统图LDPC 码的奇偶校验矩阵H是一个稀疏矩阵,相对于行与列的长度,校验矩阵每行、列中非零元素的数目(我们习惯称作行重、列重)非常小,这也是LDPC码之所以称为低密度码的原因。由于校验矩阵H的稀疏性以及构造时所使用的不同规则,使得不同LDPC码的编码二分图(Taner图)具有不同的闭合环路分布。而二分图中闭合环路是影响LDPC码性能的重要因素,它使得LDPC码在类似可信度传播(Belief ProPagation)算法的一类迭代译码算法下,表现出完全不同的译码性能。
   当H的行重和列重保持不变或尽可能的保持均匀时,我们称这样的LDPC码为正则LDPC码,反之如果列、行重变化差异较大时,称为非正则的LDPC码。研究结果表明正确设计的非正则LDPC码的性能要优于正则LDPC。根据校验矩阵H中的元素是属于GF(2)还是GF(q)(q=2p),我们还可以将LDPC码分为二元域或多元域的LDPC码。研究表明多元域LDPC码的性能要比二元域的好。

   在LDPC编码中,会用到一个叫做H矩阵的校验矩阵(Parity Check Matrix),比如,我们来看一个简单的H矩阵:

a2edbcd0b5eb6e05f5d9bf6af823f9e3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

 LDPC译码分为硬判决译码和软判决译码。

    硬判决译码又称代数译码,主要代表是比特翻转(BF)译码算法,它的实现比较简单,但是译码性能很差。硬判决译码的基本假设是当校验方程不成立时,说明此时必定有比特位发生了错误,而所有可能发生错误的比特中不满足检验方程个数最多的比特发生错误的概率最大。在每次迭代时翻转发生错误概率最大的比特并用更新之后的码字重新进行译码。

    软判决译码是一种基于概率论的译码算法,通常需要与迭代译码进行结合,才能体现成译码性能的优势,基本算法是置信传播(BP)译码算法,它的实现比代数译码方法的复杂度高很多,但译码性能非常好。

    为了解决BP译码算法实现困难问题,在学术界牵起了优化算法的浪潮,对数域置信传播译码(LLR BP)算法、最小和(Min-Sum)译码算法、Normalized Min-Sum译码算法、Offset Min-Sum译码算法等相继涌现。

    在迭代译码的过程中,信息调度方式分为两种:泛滥式调度和分层式调度。泛滥式调度的特点在于每一次译码迭代过程中,首先计算从变量节点到校验节点的所有软信息,然后计算从校验节点到变量节点的所有软信息。分层调度的特点是在计算每层软信息时,更新此次迭代中的相关的节点信息,用于下一层的软信息计算。

    最小和译码(MS,Min-Sum)算法是以LLR BP算法译码为基础,对校验节点信息更新的表达式进行的简化,其余步骤均与LLR BP译码算法一致。
    比较LLR BP译码算法和Min-Sum译码算法的校验节点信息更新过程,可以看到他们的主要区别在于LLR BP译码算法中的tanh(.)运算和加法运算在Min-Sum译码算法中被最小值和运算符号进行替换,MS译码简化了LLR BP译码算法,降低了译码算法的复杂度。

bp:

  BP 译码算法的核心思想在于利用从信道中接收到的信息在变量节点和校验节点之间进行迭代运算,从而获得最大的编码增益。在LDPC 码的校验矩阵H 中,将参与校验方程m 的信息位的集合记为M (n )S {n :H mn =1};同样,将信息位n 所参与的校验方程的集合记为N (m )S {m :H mn =1}。M (n )\n 表示在集合M (n )中除去信息位n ,N (m )\m 表示在集合N (m )中除去校验方程m 。B P 译码算法中包含两个交替执行的部分,与LDPC 码的校验矩阵H 中非零元素H mn 相关的数值q x:

20d0d8e4b3ff71578348180e6b5f94ff_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

ms:

66a3bcde4167ae7df8ea96037926b5d2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

n           = 3;
m           = 6;
p           = 200;
N           = m*p;
M           = n*p;
EsN0        = 0.25:0.5:1.25;
R           = n/m;
k           = R*log2(2);
EbN0        = EsN0/k;
Max_iter    = 10; 
H1          = func_dys(n,m,p);
% H2          = func_dys(n,m,2*p);
NUMS        = [400,300,100,100,80,50,20];

%%
%开始循环,进行误码率仿真
for i=1:length(EsN0)
    i
    Bit_err(i)    = 0; %设置误码率参数
    Num_err       = 0; %蒙特卡洛模拟次数
    Numbers       = 0; %误码率累加器
    %信道参数
    Hsd = 1;
    Hsr = 1;
    Hrd = 1;

    while Num_err <= NUMS(i)
        fprintf('Eb/N0 = %f\n', EsN0(i));
        Num_err
        N0  = 2*10^(-EbN0(i)/10);
        Trans_data             = round(rand(N-M,1));           %产生需要发送的随机数
        [ldpc_code,newH]       = func_Enc(Trans_data,H1);       %LDPC编码
        u                      = [ldpc_code;Trans_data];       %LDPC编码
        Trans_BPSK             = 2*u-1;                        %BPSK
        %S->D 
        %S->D 
        NTrans_BPSK            = Hsd*Trans_BPSK+sqrt(N0/2)*randn(size(Trans_BPSK));

        %接收端
        [vhatsd,nb_itersd,successsd] = func_Dec(NTrans_BPSK,newH,N0,Max_iter);
        [nberr,rat]                  = biterr(vhatsd(M+1:N)',Trans_data);
        %LDPC译码 
        Num_err              = Num_err+nberr;
        Numbers              = Numbers+1;
    end
    Bit_err(i) = Num_err/(N*Numbers);
end
figure;
semilogy(EsN0,Bit_err,'o-');
xlabel('Es/N0(dB)');
ylabel('BER');
grid on;
save dat.mat EsN0 Bit_err
相关文章
|
7天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
4天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
7天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
6天前
|
算法 C++ Windows
基于离散差分法的复杂微分方程组求解matlab数值仿真
本程序基于离散差分法求解复杂微分方程组,将连续微分方程转化为差分方程,采用一阶显式时间格式和一阶偏心空间格式。在MATLAB2022a上测试通过,展示了运行结果。
|
10天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
基于毕奥-萨伐尔定律的交流电机的4极旋转磁场matlab模拟与仿真
本课题基于毕奥-萨伐尔定律研究交流电机的4极旋转磁场,对比不同定子半径和2极旋转磁场。通过MATLAB2022a进行仿真,核心程序计算每个导线对空间点的磁场贡献,并绘制磁场分布。毕奥-萨伐尔定律描述了电流元产生的磁场分布,对于理解交流电机中旋转磁场的形成至关重要。
|
15天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
6天前
|
缓存 分布式计算 监控
算法优化:提升程序性能的艺术
【10月更文挑战第20天】算法优化:提升程序性能的艺术
|
10天前
|
机器学习/深度学习 存储 算法
基于圆柱体镜子和光线跟踪实现镜反射观测全景观图的matlab模拟仿真
本程序基于圆柱体镜子和光线跟踪技术,实现镜反射观测全景观图。通过模拟光线在场景与圆柱镜面之间的交互,构建出360°全景视图。核心算法涉及几何光学、计算机图形学和数值计算,适用于MATLAB 2022a版本。