m基于matlab的LDPC译码算法性能仿真,对比BP译码,最小和译码以及归一化偏移最小和译码三种算法

简介: m基于matlab的LDPC译码算法性能仿真,对比BP译码,最小和译码以及归一化偏移最小和译码三种算法

1.算法仿真效果
matlab2022a仿真结果如下:

5774a109e3eec1674897d2ead75e9d5b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
LDPC码是麻省理工学院Robert Gallager于1963年在博士论文中提出的一种具有稀疏校验矩阵的分组纠错码。几乎适用于所有的信道,因此成为编码界近年来的研究热点。它的性能逼近香农极限,且描述和实现简单,易于进行理论分析和研究,译码简单且可实行并行操作,适合硬件实现。

    LDPC仿真系统图LDPC 码的奇偶校验矩阵H是一个稀疏矩阵,相对于行与列的长度,校验矩阵每行、列中非零元素的数目(我们习惯称作行重、列重)非常小,这也是LDPC码之所以称为低密度码的原因。由于校验矩阵H的稀疏性以及构造时所使用的不同规则,使得不同LDPC码的编码二分图(Taner图)具有不同的闭合环路分布。而二分图中闭合环路是影响LDPC码性能的重要因素,它使得LDPC码在类似可信度传播(Belief ProPagation)算法的一类迭代译码算法下,表现出完全不同的译码性能。
   当H的行重和列重保持不变或尽可能的保持均匀时,我们称这样的LDPC码为正则LDPC码,反之如果列、行重变化差异较大时,称为非正则的LDPC码。研究结果表明正确设计的非正则LDPC码的性能要优于正则LDPC。根据校验矩阵H中的元素是属于GF(2)还是GF(q)(q=2p),我们还可以将LDPC码分为二元域或多元域的LDPC码。研究表明多元域LDPC码的性能要比二元域的好。

   在LDPC编码中,会用到一个叫做H矩阵的校验矩阵(Parity Check Matrix),比如,我们来看一个简单的H矩阵:

a2edbcd0b5eb6e05f5d9bf6af823f9e3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

 LDPC译码分为硬判决译码和软判决译码。

    硬判决译码又称代数译码,主要代表是比特翻转(BF)译码算法,它的实现比较简单,但是译码性能很差。硬判决译码的基本假设是当校验方程不成立时,说明此时必定有比特位发生了错误,而所有可能发生错误的比特中不满足检验方程个数最多的比特发生错误的概率最大。在每次迭代时翻转发生错误概率最大的比特并用更新之后的码字重新进行译码。

    软判决译码是一种基于概率论的译码算法,通常需要与迭代译码进行结合,才能体现成译码性能的优势,基本算法是置信传播(BP)译码算法,它的实现比代数译码方法的复杂度高很多,但译码性能非常好。

    为了解决BP译码算法实现困难问题,在学术界牵起了优化算法的浪潮,对数域置信传播译码(LLR BP)算法、最小和(Min-Sum)译码算法、Normalized Min-Sum译码算法、Offset Min-Sum译码算法等相继涌现。

    在迭代译码的过程中,信息调度方式分为两种:泛滥式调度和分层式调度。泛滥式调度的特点在于每一次译码迭代过程中,首先计算从变量节点到校验节点的所有软信息,然后计算从校验节点到变量节点的所有软信息。分层调度的特点是在计算每层软信息时,更新此次迭代中的相关的节点信息,用于下一层的软信息计算。

    最小和译码(MS,Min-Sum)算法是以LLR BP算法译码为基础,对校验节点信息更新的表达式进行的简化,其余步骤均与LLR BP译码算法一致。
    比较LLR BP译码算法和Min-Sum译码算法的校验节点信息更新过程,可以看到他们的主要区别在于LLR BP译码算法中的tanh(.)运算和加法运算在Min-Sum译码算法中被最小值和运算符号进行替换,MS译码简化了LLR BP译码算法,降低了译码算法的复杂度。

bp:

  BP 译码算法的核心思想在于利用从信道中接收到的信息在变量节点和校验节点之间进行迭代运算,从而获得最大的编码增益。在LDPC 码的校验矩阵H 中,将参与校验方程m 的信息位的集合记为M (n )S {n :H mn =1};同样,将信息位n 所参与的校验方程的集合记为N (m )S {m :H mn =1}。M (n )\n 表示在集合M (n )中除去信息位n ,N (m )\m 表示在集合N (m )中除去校验方程m 。B P 译码算法中包含两个交替执行的部分,与LDPC 码的校验矩阵H 中非零元素H mn 相关的数值q x:

20d0d8e4b3ff71578348180e6b5f94ff_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

ms:

66a3bcde4167ae7df8ea96037926b5d2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

n           = 3;
m           = 6;
p           = 200;
N           = m*p;
M           = n*p;
EsN0        = 0.25:0.5:1.25;
R           = n/m;
k           = R*log2(2);
EbN0        = EsN0/k;
Max_iter    = 10; 
H1          = func_dys(n,m,p);
% H2          = func_dys(n,m,2*p);
NUMS        = [400,300,100,100,80,50,20];

%%
%开始循环,进行误码率仿真
for i=1:length(EsN0)
    i
    Bit_err(i)    = 0; %设置误码率参数
    Num_err       = 0; %蒙特卡洛模拟次数
    Numbers       = 0; %误码率累加器
    %信道参数
    Hsd = 1;
    Hsr = 1;
    Hrd = 1;

    while Num_err <= NUMS(i)
        fprintf('Eb/N0 = %f\n', EsN0(i));
        Num_err
        N0  = 2*10^(-EbN0(i)/10);
        Trans_data             = round(rand(N-M,1));           %产生需要发送的随机数
        [ldpc_code,newH]       = func_Enc(Trans_data,H1);       %LDPC编码
        u                      = [ldpc_code;Trans_data];       %LDPC编码
        Trans_BPSK             = 2*u-1;                        %BPSK
        %S->D 
        %S->D 
        NTrans_BPSK            = Hsd*Trans_BPSK+sqrt(N0/2)*randn(size(Trans_BPSK));

        %接收端
        [vhatsd,nb_itersd,successsd] = func_Dec(NTrans_BPSK,newH,N0,Max_iter);
        [nberr,rat]                  = biterr(vhatsd(M+1:N)',Trans_data);
        %LDPC译码 
        Num_err              = Num_err+nberr;
        Numbers              = Numbers+1;
    end
    Bit_err(i) = Num_err/(N*Numbers);
end
figure;
semilogy(EsN0,Bit_err,'o-');
xlabel('Es/N0(dB)');
ylabel('BER');
grid on;
save dat.mat EsN0 Bit_err
相关文章
|
12天前
|
算法 数据可视化 图形学
网络通信系统的voronoi图显示与能耗分析matlab仿真
在MATLAB2022a中,该程序模拟了两层基站网络,使用泊松分布随机生成Macro和Micro基站,并构建Voronoi图。它计算每个用户的信号强度,选择最强连接,并分析SINR和数据速率。程序还涉及能耗计算,包括传输、接收、处理和空闲能耗的分析。Voronoi图帮助可视化网络连接和优化能源效率。
|
1天前
|
传感器 算法
基于无线传感器网络的MCKP-MMF算法matlab仿真
MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。
基于无线传感器网络的MCKP-MMF算法matlab仿真
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于Qlearning强化学习的小车弧线轨迹行驶控制matlab仿真
**MATLAB 2022a仿真实现Q-learning控制小车弧线行驶,展示学习过程及奖励变化。Q-learning是无模型强化学习算法,学习最优策略以稳定行驶。环境建模为二维平面,状态包括位置、朝向,动作涵盖转向、速度。奖励函数鼓励保持在轨迹上,用贝尔曼方程更新Q表。MATLAB代码动态显示轨迹及奖励随训练改善。**
30 15
|
3天前
|
机器学习/深度学习 算法 数据挖掘
基于改进K-means的网络数据聚类算法matlab仿真
**摘要:** K-means聚类算法分析,利用MATLAB2022a进行实现。算法基于最小化误差平方和,优点在于简单快速,适合大数据集,但易受初始值影响。文中探讨了该依赖性并通过实验展示了随机初始值对结果的敏感性。针对传统算法的局限,提出改进版解决孤点影响和K值选择问题。代码中遍历不同K值,计算距离代价,寻找最优聚类数。最终应用改进后的K-means进行聚类分析。
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的CNN-GRU的时间序列回归预测matlab仿真
- **算法理论:** 利用PSO优化的CNN-GRU,结合CNN的特征提取和GRU的记忆机制,进行时间序列预测。 - **CNN:** 通过卷积捕获序列的结构信息。 - **GRU:** 简化的LSTM,处理序列依赖。 - **预测步骤:** 1. 初始化粒子群,每粒子对应一组模型参数。 2. 训练并评估CNN-GRU模型的验证集MSE。 3. 使用PSO更新参数,寻找最佳配置。 4. 迭代优化直至满足停止准则。 ```
|
5天前
|
监控
基于偏微分方程离散化计算的地下换热器建模与温度检测matlab仿真
**摘要:** 探索地下换热器的建模与温度检测,使用MATLAB2022a进行系统仿真,关注传热过程的热传导、对流和辐射。通过离散化偏微分方程建立数值模型,模拟温度场,考虑地质特性和水流影响。建模以网格单元描述温度变化,采用热电偶、红外和光纤测温技术验证模型并监控温度,各具优缺点。光纤测温法提供高精度和抗干扰的分布式监测。
|
3天前
|
算法
六自由度Stewart平台的matlab模拟与仿真
**摘要** 探索MATLAB2022a模拟6-DOF Stewart平台,模拟动态变化及伺服角度。平台实现XYZ平移及绕XYZ轴旋转。结构含中心动平台、固定基座及6个伺服驱动的伸缩连杆。运动学原理涉及球铰/虎克铰的转动自由度。通过动力学分析解决输入力矩到平台加速度的转换。核心算法与模型揭示了平台的精密定位能力。仿真结果显示动态性能。
|
5天前
|
算法 数据安全/隐私保护
基于GA遗传优化算法的Okumura-Hata信道参数估计算法matlab仿真
在MATLAB 2022a中应用遗传算法进行无线通信优化,无水印仿真展示了算法性能。遗传算法源于Holland的理论,用于全局优化,常见于参数估计,如Okumura-Hata模型的传播损耗参数。该模型适用于150 MHz至1500 MHz的频段。算法流程包括选择、交叉、变异等步骤。MATLAB代码执行迭代,计算目标值,更新种群,并计算均方根误差(RMSE)以评估拟合质量。最终结果比较了优化前后的RMSE并显示了SNR估计值。
20 7
|
2天前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
2天前
|
传感器 算法 数据安全/隐私保护
基于鲸鱼优化的DSN弱栅栏覆盖算法matlab仿真
```markdown 探索MATLAB2022a中WOA与DSN弱栅栏覆盖的创新融合,模拟鲸鱼捕食策略解决传感器部署问题。算法结合“搜索”、“包围”、“泡沫网”策略,优化节点位置以最大化复杂环境下的区域覆盖。目标函数涉及能量效率、网络寿命、激活节点数、通信质量及覆盖率。覆盖评估基于覆盖半径比例,旨在最小化未覆盖区域。 ```