m基于matlab的LDPC译码算法性能仿真,对比BP译码,最小和译码以及归一化偏移最小和译码三种算法

简介: m基于matlab的LDPC译码算法性能仿真,对比BP译码,最小和译码以及归一化偏移最小和译码三种算法

1.算法仿真效果
matlab2022a仿真结果如下:

5774a109e3eec1674897d2ead75e9d5b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
LDPC码是麻省理工学院Robert Gallager于1963年在博士论文中提出的一种具有稀疏校验矩阵的分组纠错码。几乎适用于所有的信道,因此成为编码界近年来的研究热点。它的性能逼近香农极限,且描述和实现简单,易于进行理论分析和研究,译码简单且可实行并行操作,适合硬件实现。

    LDPC仿真系统图LDPC 码的奇偶校验矩阵H是一个稀疏矩阵,相对于行与列的长度,校验矩阵每行、列中非零元素的数目(我们习惯称作行重、列重)非常小,这也是LDPC码之所以称为低密度码的原因。由于校验矩阵H的稀疏性以及构造时所使用的不同规则,使得不同LDPC码的编码二分图(Taner图)具有不同的闭合环路分布。而二分图中闭合环路是影响LDPC码性能的重要因素,它使得LDPC码在类似可信度传播(Belief ProPagation)算法的一类迭代译码算法下,表现出完全不同的译码性能。
   当H的行重和列重保持不变或尽可能的保持均匀时,我们称这样的LDPC码为正则LDPC码,反之如果列、行重变化差异较大时,称为非正则的LDPC码。研究结果表明正确设计的非正则LDPC码的性能要优于正则LDPC。根据校验矩阵H中的元素是属于GF(2)还是GF(q)(q=2p),我们还可以将LDPC码分为二元域或多元域的LDPC码。研究表明多元域LDPC码的性能要比二元域的好。

   在LDPC编码中,会用到一个叫做H矩阵的校验矩阵(Parity Check Matrix),比如,我们来看一个简单的H矩阵:

a2edbcd0b5eb6e05f5d9bf6af823f9e3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

 LDPC译码分为硬判决译码和软判决译码。

    硬判决译码又称代数译码,主要代表是比特翻转(BF)译码算法,它的实现比较简单,但是译码性能很差。硬判决译码的基本假设是当校验方程不成立时,说明此时必定有比特位发生了错误,而所有可能发生错误的比特中不满足检验方程个数最多的比特发生错误的概率最大。在每次迭代时翻转发生错误概率最大的比特并用更新之后的码字重新进行译码。

    软判决译码是一种基于概率论的译码算法,通常需要与迭代译码进行结合,才能体现成译码性能的优势,基本算法是置信传播(BP)译码算法,它的实现比代数译码方法的复杂度高很多,但译码性能非常好。

    为了解决BP译码算法实现困难问题,在学术界牵起了优化算法的浪潮,对数域置信传播译码(LLR BP)算法、最小和(Min-Sum)译码算法、Normalized Min-Sum译码算法、Offset Min-Sum译码算法等相继涌现。

    在迭代译码的过程中,信息调度方式分为两种:泛滥式调度和分层式调度。泛滥式调度的特点在于每一次译码迭代过程中,首先计算从变量节点到校验节点的所有软信息,然后计算从校验节点到变量节点的所有软信息。分层调度的特点是在计算每层软信息时,更新此次迭代中的相关的节点信息,用于下一层的软信息计算。

    最小和译码(MS,Min-Sum)算法是以LLR BP算法译码为基础,对校验节点信息更新的表达式进行的简化,其余步骤均与LLR BP译码算法一致。
    比较LLR BP译码算法和Min-Sum译码算法的校验节点信息更新过程,可以看到他们的主要区别在于LLR BP译码算法中的tanh(.)运算和加法运算在Min-Sum译码算法中被最小值和运算符号进行替换,MS译码简化了LLR BP译码算法,降低了译码算法的复杂度。

bp:

  BP 译码算法的核心思想在于利用从信道中接收到的信息在变量节点和校验节点之间进行迭代运算,从而获得最大的编码增益。在LDPC 码的校验矩阵H 中,将参与校验方程m 的信息位的集合记为M (n )S {n :H mn =1};同样,将信息位n 所参与的校验方程的集合记为N (m )S {m :H mn =1}。M (n )\n 表示在集合M (n )中除去信息位n ,N (m )\m 表示在集合N (m )中除去校验方程m 。B P 译码算法中包含两个交替执行的部分,与LDPC 码的校验矩阵H 中非零元素H mn 相关的数值q x:

20d0d8e4b3ff71578348180e6b5f94ff_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

ms:

66a3bcde4167ae7df8ea96037926b5d2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

n           = 3;
m           = 6;
p           = 200;
N           = m*p;
M           = n*p;
EsN0        = 0.25:0.5:1.25;
R           = n/m;
k           = R*log2(2);
EbN0        = EsN0/k;
Max_iter    = 10; 
H1          = func_dys(n,m,p);
% H2          = func_dys(n,m,2*p);
NUMS        = [400,300,100,100,80,50,20];

%%
%开始循环,进行误码率仿真
for i=1:length(EsN0)
    i
    Bit_err(i)    = 0; %设置误码率参数
    Num_err       = 0; %蒙特卡洛模拟次数
    Numbers       = 0; %误码率累加器
    %信道参数
    Hsd = 1;
    Hsr = 1;
    Hrd = 1;

    while Num_err <= NUMS(i)
        fprintf('Eb/N0 = %f\n', EsN0(i));
        Num_err
        N0  = 2*10^(-EbN0(i)/10);
        Trans_data             = round(rand(N-M,1));           %产生需要发送的随机数
        [ldpc_code,newH]       = func_Enc(Trans_data,H1);       %LDPC编码
        u                      = [ldpc_code;Trans_data];       %LDPC编码
        Trans_BPSK             = 2*u-1;                        %BPSK
        %S->D 
        %S->D 
        NTrans_BPSK            = Hsd*Trans_BPSK+sqrt(N0/2)*randn(size(Trans_BPSK));

        %接收端
        [vhatsd,nb_itersd,successsd] = func_Dec(NTrans_BPSK,newH,N0,Max_iter);
        [nberr,rat]                  = biterr(vhatsd(M+1:N)',Trans_data);
        %LDPC译码 
        Num_err              = Num_err+nberr;
        Numbers              = Numbers+1;
    end
    Bit_err(i) = Num_err/(N*Numbers);
end
figure;
semilogy(EsN0,Bit_err,'o-');
xlabel('Es/N0(dB)');
ylabel('BER');
grid on;
save dat.mat EsN0 Bit_err
相关文章
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
48 31
|
2天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
1天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
11天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
9天前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
9天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
9天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
15天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
21天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
17天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
下一篇
DataWorks