RNNsearch、Multi-task、attention-model...你都掌握了吗?一文总结机器翻译必备经典模型(2)

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: RNNsearch、Multi-task、attention-model...你都掌握了吗?一文总结机器翻译必备经典模型

Convolutional Encoder


Convolutional Encoder 是基于卷积层的模型,与循环神经网络计算受时间依赖性约束不同,Convolutional Encoder能够实现同时编码。

非循环编码器的一个简单基准是Ranzato提到的池化模型,即将K个连续词的词嵌入进行简单的平均。除了输入中的单词彼此接近之外,平均单词嵌入不会表达位置信息。因此,引入位置嵌入来对句子中每个词的绝对位置进行编码。因此,源语句中的每个嵌入e_j都包含一个位置嵌入l_j和一个词嵌入w_j。与循环编码器类似,注意力分数a_ij从池化表示z_j中计算得到,条件输入c_i是嵌入e_j的加权和:



池化的一个直接扩展是学习卷积神经网络(CNN)中的核。编码器的输出z_j包含一个固定大小的上下文信息,取决于核的宽度k,但所需的上下文宽度可能会变化。这可以通过堆叠几层卷积和非线性来解决:额外的层增加了总的上下文大小,而非线性可以根据需要调节上下文的有效大小。例如,用内核宽度k=3堆叠5个卷积会产生11个字的输入域,即每个输出取决于11个输入字,非线性允许编码器利用全部输入域,或根据需要集中于较少的字。为了便于深度编码器的学习,将每个卷积的输入的残差连接添加到输出,然后将非线性激活函数应用到输出。多层CNN是通过将几个区块堆叠在一起构建的。CNN不包含通常用于下采样的池化层,也就是说,在网络应用后,保留完整的源序列长度。与池化模型类似,卷积编码器使用位置嵌入法。

最后的编码器由两个堆叠的卷积网络组成(图7)。CNN-a生成编码器输出z_j来计算注意力分数a_i,而解码器的条件输入c_i是通过CNN-c的输出相加来计算的:



图7. 带有单层卷积编码器网络的神经机器翻译模型。CNN-a在左边,CNN-c在右边。没有显示嵌入层


当前 SOTA!平台收录 Convolutional Encoder1 个模型实现资源。

项目 SOTA!平台项目详情页
Convolutional Encoder 前往SOTA!模型平台获取实现资源:https://sota.jiqizhixin.com/project/convolutional-encoder


相关文章
|
人工智能 自然语言处理 搜索推荐
FlowSeq、mBART、BERT-fused、mRASP、mRASP2...你都掌握了吗?一文总结机器翻译必备经典模型(3)
FlowSeq、mBART、BERT-fused、mRASP、mRASP2...你都掌握了吗?一文总结机器翻译必备经典模型
247 0
FlowSeq、mBART、BERT-fused、mRASP、mRASP2...你都掌握了吗?一文总结机器翻译必备经典模型(3)
|
机器学习/深度学习 自然语言处理 算法
FlowSeq、mBART、BERT-fused、mRASP、mRASP2...你都掌握了吗?一文总结机器翻译必备经典模型(2)
FlowSeq、mBART、BERT-fused、mRASP、mRASP2...你都掌握了吗?一文总结机器翻译必备经典模型
336 0
|
机器学习/深度学习 自然语言处理 算法
FlowSeq、mBART、BERT-fused、mRASP、mRASP2...你都掌握了吗?一文总结机器翻译必备经典模型(1)
FlowSeq、mBART、BERT-fused、mRASP、mRASP2...你都掌握了吗?一文总结机器翻译必备经典模型
166 0
|
机器学习/深度学习 人工智能 自然语言处理
Unsupervised NMT、PBSMT、coarse-to-fine...你都掌握了吗?一文总结机器翻译必备经典模型(3)
Unsupervised NMT、PBSMT、coarse-to-fine...你都掌握了吗?一文总结机器翻译必备经典模型
188 0
|
机器学习/深度学习 自然语言处理
Unsupervised NMT、PBSMT、coarse-to-fine...你都掌握了吗?一文总结机器翻译必备经典模型(2)
Unsupervised NMT、PBSMT、coarse-to-fine...你都掌握了吗?一文总结机器翻译必备经典模型
141 0
|
机器学习/深度学习 自然语言处理 算法
Unsupervised NMT、PBSMT、coarse-to-fine...你都掌握了吗?一文总结机器翻译必备经典模型(1)
Unsupervised NMT、PBSMT、coarse-to-fine...你都掌握了吗?一文总结机器翻译必备经典模型
|
机器学习/深度学习 人工智能 自然语言处理
RNNsearch、Multi-task、attention-model...你都掌握了吗?一文总结机器翻译必备经典模型(3)
RNNsearch、Multi-task、attention-model...你都掌握了吗?一文总结机器翻译必备经典模型
177 0
|
机器学习/深度学习 自然语言处理 算法
RNNsearch、Multi-task、attention-model...你都掌握了吗?一文总结机器翻译必备经典模型(1)
RNNsearch、Multi-task、attention-model...你都掌握了吗?一文总结机器翻译必备经典模型
112 0
|
算法 C语言
算法竞赛入门【码蹄集新手村600题】(MT1200-1220)C语言(三)
算法竞赛入门【码蹄集新手村600题】(MT1200-1220)C语言(三)
255 1
|
机器学习/深度学习 算法 C语言
算法竞赛入门【码蹄集新手村600题】(MT1200-1220)C语言(一)
算法竞赛入门【码蹄集新手村600题】(MT1200-1220)C语言
135 1