轻松完成700多条指令、成功率达97%!谷歌开源机器人领域transformer

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 轻松完成700多条指令、成功率达97%!谷歌开源机器人领域transformer

谷歌机器人团队等在机器人领域构建了一个多任务 transformer 模型,显著改进了对新任务、环境和对象的零样本泛化。


我们知道,机器学习(ML)多个子领域(如 NLP 和 CV)的最新重大进展通过一种共享的通用方法实现,该方法充分利用大规模、多样化数据集以及有效吸收所有数据的表达模型。尽管已经有各种尝试将这种方法应用于机器人技术,但机器人还没能利用到高性能模型。


构成挑战的因素有几个。首先缺乏大规模和多样化机器人数据,这限制了模型吸收广泛机器人经验的能力。数据收集对于机器人技术来说成本高昂且具有挑战性,这是因为数据集管理需要工程量大的自主操作或者使用人类远程操作收集的演示。其次缺乏可以从此类数据集中学习并有效泛化的高表达性、可扩展且速度足够快的实时推理模型。

 

为了解决这些挑战,谷歌机器人团队等提出了 Robotics Transformer 1 (RT-1)。这是一种多任务模型,可以 tokenize 机器人的输入和输出动作,从而在运行时实现高效推理,使实时控制成为可能。


RT-1 模型在包含 130k 个 episode 的大型真实机器人数据集上进行训练,该数据集涵盖了 700 多项任务,使用 Everyday Robots (EDR) 的 13 台机器人在 17 个月内收集而成。数据集中展示的一组高级技能包括拾取和放置物品、打开和关闭抽屉、将物品放入和取出抽屉、将细长的物品直立放置、敲倒物体、拉出餐巾纸和打开罐子。




该团队对模型和训练集中的许多设计选择进行了仔细评估和消融实验,分析了 tokenization、动作表示和数据集组合的影响。与现有技术相比,RT-1 可以显著改进对新任务、环境和对象的零样本泛化。RT-1 可以以 97% 的成功率执行 700 多个训练指令,并且可以泛化到新的任务、干扰因素和背景。


RT-1 吸收了大量数据,包括涉及多任务、对象和环境的机器人轨迹,实现了更好性能和泛化能力。


最后,该团队将 RT-1 代码开源,希望为未来扩大机器人学习的研究提供宝贵的资源。


RT-1 模型概览


,时长00:53


RT-1 建立在一个 transformer 架构上,该架构从机器人相机中获取瞬时图像以及以自然语言表达的任务描述作为输入,并直接输出 tokenized 动作。RT-1 的架构类似于针对具有因果掩蔽的标准分类交叉熵目标训练的 decoder-only 序列模型。RT-1 的主要功能包括图像和动作 tokenization 以及 token 压缩。


图像 tokenization。该团队通过在 ImageNet 上预训练的 EfficientNet-B3 模型传递图像,然后将生成的 9×9×512 空间特征图展平为 81 个 tokens。图像 tokenizer 以自然语言任务指令为条件,并使用初始化为身份的 FiLM 层在早期提取与任务相关的图像特征。


动作 tokenization。机器人的动作维度包括手臂运动的 7 个变量(x、y、z、翻转、俯仰、摇摆、打开夹具)、3 个基本运动变量(x、y、摇摆)以及一个在控制臂、控制 base 或终止 episode 三种模式之间切换的额外具体变量。每个动作维度被离散化为 256 个 bins。


Token 压缩。RT-1 自适应地选择图像 tokens 的软组合,这些组合根据它们对使用元素级注意力模块 TokenLearner 学习的影响进行压缩,使推理速度提升 2.4 倍以上。


RT-1 架构、数据集和评估概览图。


实验和结果


为了更好地理解 RT-1 的泛化能力,该团队在三个基准上进行了实验:Gato、BC-Z(与 RT-1 参数量相同)和 BC-Z XL,并通过四个类别进行比较。


  • 在所见到的任务上的表现;
  • 在没见过任务上的表现:在训练集中,机器人的技能和对象是分开看到的,但以新颖的方式结合在一起;
  • 鲁棒性:在有干扰(有 9 个干扰,此外还有遮挡情况)、改变背景(换个新厨房、光照不同等)上的任务表现;
  • 长情景:在真实厨房中执行 SayCan 类型的自然语言指令。


RT-1 在四个类别的比较中都大大超过基线,表现出极强的泛化性和鲁棒性。


RT-1 与基线性能对比。


整合异构数据源


为了进一步挖掘 RT-1 的性能,该团队还将训练另一个机器人的数据用来训练 RT-1,目的有两个:(1) 测试模型在新数据上是否保持其在原始任务上的性能;(2) 观察模型在新的以及不同数据上泛化能力。


从多个机器人那里收集数据,用来训练 RT-1。


结果表明,RT-1 能够通过观察其他机器人的经验来获得新技能。特别是,当 RT-1 同时使用来自 Kuka bin-picking 数据和 EDR 数据进行训练时,准确率达到 39%。比仅使用 EDR 数据训练时的 22% 准确率提高了近 2 倍。


当 RT-1 仅在 Kuka bin-picking 数据上进行训练,然后在 EDR robot bin-picking 数据上评估时,准确率为 0。



SayCan 任务


RT-1 的高性能和泛化能力可以通过 SayCan 实现远距离、移动操作任务。SayCan 算法是谷歌在今年提出的,在这个算法中,谷歌让机器人充当语言模型的「手和眼睛」,而语言模型提供有关任务的高级语义知识。


该团队在两个真实的 Kitchen 中进行了评估,Kitchen2 构成了一个比 Kitchen1 更具挑战性的泛化场景。由结果可得,SayCan 与 RT-1 在 Kitchen1 中实现了 67% 的执行成功率,优于其他基线。在 Kitchen2 中,SayCan 与 Gato 以及 SayCan 与 BCZ 的性能下降,而 RT-1 没有出现明显的下降。



下面的视频展示了 PaLM-SayCan-RT1 在多个真实厨房中执行长期任务的示例。

相关文章
|
5月前
|
传感器 人工智能 算法
适应多形态多任务,最强开源机器人学习系统八爪鱼诞生
【6月更文挑战第6天】【八爪鱼开源机器人学习系统】由加州大学伯克利分校等机构研发,适用于多形态多任务,已在arXiv上发表。系统基于transformer,预训练于800k机器人轨迹数据集,能快速适应新环境,支持单臂、双机械臂等。特点是多形态适应、多任务处理、快速微调及开源可复现。实验显示其在9个平台有效,但仍需改进传感器处理和语言指令理解。论文链接:https://arxiv.org/pdf/2405.12213
95 1
|
2月前
|
人工智能 自然语言处理 机器人
谷歌将大模型集成在实体机器人中,能看、听、说执行57种任务
【9月更文挑战第17天】近年来,人工智能在多模态大模型领域取得显著进展。谷歌最新研发的Mobility VLA系统,将大模型与实体机器人结合,实现了视觉、语言和行动的融合,使机器人能理解并执行复杂多模态指令,如“我应该把这个放回哪里?”系统在真实环境测试中表现出色,但在计算资源、数据需求及伦理问题上仍面临挑战。相关论文发布于https://arxiv.org/abs/2407.07775。
56 9
|
2月前
|
机器学习/深度学习 传感器 机器人
机器人策略学习的Game Changer?伯克利提出Body Transformer
【9月更文挑战第13天】加州大学伯克利分校的研究团队提出了一种名为Body Transformer(BoT)的创新架构,旨在通过将机器人的物理形态建模为传感器和执行器组成的图,并利用掩码注意力机制汇聚信息,为机器人学习策略提供有效归纳偏置。BoT不仅在模仿学习和强化学习中表现出色,在任务完成、缩放特性及计算效率方面超越传统架构,而且具备更强的稳定性和泛化能力。尽管存在适用范围和计算资源等局限性,BoT仍展示了在实际应用中的巨大潜力。论文详情见:https://arxiv.org/pdf/2408.06316v1
31 6
|
3月前
|
自然语言处理 机器人 API
Instruct2Act:使用大型语言模型将多模态指令映射到机器人动作
Instruct2Act是一个框架,它结合了大型语言模型和多模态基础模型,将自然语言和视觉指令转换为机器人的顺序动作,实现精确的感知、规划和行动,展示了强大的零样本性能和灵活性。
46 0
Instruct2Act:使用大型语言模型将多模态指令映射到机器人动作
|
4月前
|
机器学习/深度学习 算法 机器人
相隔3000英里,用苹果头显遥控机器人!UCSD、MIT华人团队开源TeleVision
【7月更文挑战第19天】UCSD和MIT华人团队开发的TeleVision技术实现了远程操控机器人。借助AR/VR,操作者通过头显设备获得实时的机器人视角,并通过手势控制执行任务。系统支持多人协作,已在远距离实验中成功导航复杂环境。不过,高带宽需求和交互学习曲线是挑战。[论文链接](https://robot-tv.github.io/resources/television.pdf)**
73 14
|
4月前
|
机器学习/深度学习 监控 安全
相隔3000英里,用苹果头显遥控机器人!UCSD、MIT华人团队开源TeleVision
【7月更文挑战第20天】加州大学圣地亚哥分校(UCSD)与麻省理工学院(MIT)的华人团队开发出TeleVision系统,结合Apple AR/VR头显,实现超远程沉浸式机器人控制。💡该系统克服视频流延迟,精准手势识别难题,让操作者仿佛亲临现场指挥机器人行动。目前处于研究阶段,已展示基本任务执行能力。更多信息查阅[论文](https://robot-tv.github.io/resources/television.pdf)。🌐 --- **🏷️远程控制** **🏷️虚拟现实** **🏷️机器人技术** **🏷️华人科研** **🏷️科技创新**
48 4
|
4月前
|
机器人
Telegram统计机器人源码/TG记账群发机器源码人/TG自动记账全开源版本
Telegram统计机器人源码/TG记账群发机器源码人/TG自动记账全开源版本
240 0
|
5月前
|
人工智能 小程序 机器人
开源一个RAG大模型本地知识库问答机器人-ChatWiki
准备工作 再安装ChatWiki之前,您需要准备一台具有联网功能的linux服务器,并确保服务器满足最低系统要求 • Cpu:最低需要2 Core • RAM:最低需要4GB 开始安装 ChatWiki社区版基于Docker部署,请先确保服务器已经安装好Docker。如果没有安装,可以通过以下命令安装:
302 0
|
6月前
|
传感器 人工智能 监控
智能耕耘机器人
智能耕耘机器人
130 3
|
18小时前
|
机器学习/深度学习 传感器 算法
智能机器人在工业自动化中的应用与前景###
本文探讨了智能机器人在工业自动化领域的最新应用,包括其在制造业中的集成、操作灵活性和成本效益等方面的优势。通过分析当前技术趋势和案例研究,预测了智能机器人未来的发展方向及其对工业生产模式的潜在影响。 ###
17 7

热门文章

最新文章

下一篇
无影云桌面