一行代码12倍加速Bert推理,OpenAI编程语言加持的引擎火了

简介: 一行代码12倍加速Bert推理,OpenAI编程语言加持的引擎火了


项目作者表示,未来还将在预热速度、训练支持、多 GPU 支持、量化和硬件支持等多方面改进推 理引擎 Kernl。


一行代码的威力到底有多大?今天我们要介绍的这个 Kernl 库,用户只需一行代码,在 GPU 上就能以快几倍的速度运行 Pytorch transformer 模型,从而极大的加快了模型的推理速度。


具体而言,有了 Kernl 的加持,Bert 的推理速度比 Hugging Face 基线快了 12 倍。这一成果主要得益于 Kernl 用新的 OpenAI 编程语言 Triton 和 TorchDynamo 编写了定制的 GPU 内核。项目作者来自 Lefebvre Sarrut。



GitHub 地址:https://github.com/ELS-RD/kernl/


以下是 Kernl 与其他推理引擎的比较,横坐标中括号里的数字分别表示 batch size、序列长度,纵坐标为推理加速情况。


基准测试在 3090 RTX GPU 运行,以及 12 核 Intel CPU。


由上述结果可得,在长序列输入这一块,Kernl 可以说是最快的推理引擎(上图中的右半部分),在短输入序列上接近英伟达的 TensorRT(上图中的左半部分)。除此以外,Kernl 内核代码非常简短,易于理解和修改。该项目甚至添加了 Triton 调试器和工具 (基于 Fx) 来简化内核替换,因此不需要修改 PyTorch 模型源代码。


项目作者 Michaël Benesty 对这一研究进行了总结,他们发布的 Kernl 是一个用于加速 transformer 推理的库,速度非常快,有时会到达 SOTA 性能,可破解以匹配大多数 transformer 架构。



他们还在 T5 上做了测试,速度提高 6 倍,Benesty 表示这仅仅是个开始。



为什么创建 Kernl?


在 Lefebvre Sarrut,项目作者在生产中运行几个 transformers 模型,其中一些对延迟敏感,主要是搜索和 recsys。他们还在使用 OnnxRuntime 和 TensorRT,甚至创建了 transformer-deploy OSS 库来与社区分享知识。


最近,作者在测试生成语言,并努力加速它们。然而事实证明,使用传统工具做到这些非常困难。在他们看来,Onnx 是另一种有趣的格式,它是一种针对机器学习所设计的开放式文件格式,用于存储训练好的模型,具有广泛的硬件支持。


但是,当他们处理新的 LLM 架构时,Onnx 生态系统(主要是推理引擎)存在以下几种限制:


  • 没有控制流的模型导出到 Onnx 很简单,这是因为可以依赖跟踪。但是动态行为更难获得;
  • 与 PyTorch 不同,ONNX Runtime/TensorRT 还没有原生支持实现张量并行的多 GPU 任务;
  • TensorRT 无法为具有相同配置文件的 transformer 模型管理 2 个动态轴。但由于通常希望能够提供不同长度的输入,因此需要每个批大小构建 1 个模型;
  • 非常大的模型很常见,但 Onnx(作为 protobuff 文件)在文件大小方面有一些限制,需要将权重存储在模型之外来解决问题。


一个非常烦人的事实是新模型永远不会被加速,你需要等着其他人来为此编写自定义 CUDA 内核。现有解决方案并不是不好,OnnxRuntime 的一大优点是它的多硬件支持,TensorRT 则以非常快速著称。


所以,项目作者想要在 Python/PyTorch 上有像 TensorRT 一样快的优化器,这也是他们创建 Kernl 的原因。


如何做到?


内存带宽通常是深度学习的瓶颈,为了加速推理,减少内存访问往往是一个很好的策略。在短输入序列上,瓶颈通常与 CPU 开销有关,它必须被消除。项目作者主要利用了以下 3 项技术:

首先是 OpenAI Triton,它是一种编写 CUDA 等 GPU 内核的语言,不要将它与 Nvidia Triton 推理服务器混淆,它的效率更高。几个操作的融合实现了改进,使得他们不在 GPU 内存中保留中间结果的情况下链接计算。作者使用它重写注意力(由 Flash Attention 替换)、线性层和激活以及 Layernorm/Rmsnorm。


其次是 CUDA 图。在预热(warmup)步骤中,它将保存每个启动的内核及它们的参数。然后,项目作者重建了整个推理过程。


最后是 TorchDynamo,这个由 Meta 提出的原型机帮助项目作者应对动态行为。在预热步骤中,它会跟踪模型并提供一个 Fx 图(静态计算图)。他们使用自己的内核替换了 Fx 图的一些操作,并在 Python 中重新编译。


未来,项目路线图将涵盖更快的预热、ragged 推理(padding 中没有损失计算)、训练支持(长序列支持)、多 GPU 支持(多并行化模式)、量化(PTQ)、新 batch 的 Cutlass 内核测试以及提升硬件支持等。


更多详细内容请参阅原项目。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
8月前
|
JavaScript
Bert-vits2-v2.2新版本本地训练推理整合包(原神八重神子英文模型miko)
近日,Bert-vits2-v2.2如约更新,该新版本v2.2主要把Emotion 模型换用CLAP多模态模型,推理支持输入text prompt提示词和audio prompt提示语音来进行引导风格化合成,让推理音色更具情感特色,并且推出了新的预处理webuI,操作上更加亲民和接地气。
Bert-vits2-v2.2新版本本地训练推理整合包(原神八重神子英文模型miko)
|
8月前
|
机器学习/深度学习 异构计算 Python
Bert-vits2最终版Bert-vits2-2.3云端训练和推理(Colab免费GPU算力平台)
对于深度学习初学者来说,JupyterNoteBook的脚本运行形式显然更加友好,依托Python语言的跨平台特性,JupyterNoteBook既可以在本地线下环境运行,也可以在线上服务器上运行。GoogleColab作为免费GPU算力平台的执牛耳者,更是让JupyterNoteBook的脚本运行形式如虎添翼。 本次我们利用Bert-vits2的最终版Bert-vits2-v2.3和JupyterNoteBook的脚本来复刻生化危机6的人气角色艾达王(ada wong)。
Bert-vits2最终版Bert-vits2-2.3云端训练和推理(Colab免费GPU算力平台)
|
并行计算 API C++
又欲又撩人,基于新版Bert-vits2V2.0.2音色模型雷电将军八重神子一键推理整合包分享
Bert-vits2项目近期炸裂更新,放出了v2.0.2版本的代码,修正了存在于2.0先前版本的重大bug,并且重炼了底模,本次更新是即1.1.1版本后最重大的更新,支持了三语言训练及混合合成,并且做到向下兼容,可以推理老版本的模型,本次我们基于新版V2.0.2来本地推理原神小姐姐们的音色模型。
又欲又撩人,基于新版Bert-vits2V2.0.2音色模型雷电将军八重神子一键推理整合包分享
|
8月前
|
机器学习/深度学习 异构计算 AI芯片
云端开炉,线上训练,Bert-vits2-v2.2云端线上训练和推理实践(基于GoogleColab)
对于笔者这样的穷哥们来讲,GoogleColab就是黑暗中的一道光,就算有训练时长限制,也能凑合用了,要啥自行车?要饭咱也就别嫌饭馊了,本次我们基于GoogleColab在云端训练和推理Bert-vits2-v2.2项目,复刻那黑破坏神角色莉莉丝(lilith)。
云端开炉,线上训练,Bert-vits2-v2.2云端线上训练和推理实践(基于GoogleColab)
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
BERT的继任者ModernBERT:融合长序列处理、代码理解与高效计算的新一代双向编码器
ModernBERT 是一个全新的模型系列,在**速度**和**准确性**两个维度上全面超越了 BERT 及其后继模型。
133 9
|
17天前
|
人工智能 安全 开发者
OpenAI o1强推理能提升安全性?长对话诱导干翻o1
最近,一项名为《Derail Yourself: Multi-turn LLM Jailbreak Attack through Self-discovered Clues》的研究揭示了大型语言模型(LLM)在多轮交互中的安全漏洞。该研究提出了一种基于行动者网络理论的新型攻击方法ActorAttack,通过构建语义相关行动者网络,生成多样化攻击路径,隐藏有害意图并利用LLM知识发现通向有害目标的路径。研究表明,ActorAttack在多轮攻击中表现优于现有方法,引发了对LLM安全性的担忧。研究团队计划发布SafeMTData数据集,以帮助训练更安全的LLM,并强调跨学科合作的重要性。
52 8
|
2月前
|
机器学习/深度学习 人工智能 算法
从 OpenAI-o1 看大模型的复杂推理能力
深入解析OpenAI o1模型的复杂推理技术与发展历程
从 OpenAI-o1 看大模型的复杂推理能力
|
4月前
|
机器学习/深度学习 人工智能 UED
OpenAI o1模型:AI通用复杂推理的新篇章
OpenAI发布了其最新的AI模型——o1,这款模型以其独特的复杂推理能力和全新的训练方式,引起了业界的广泛关注。今天,我们就来深入剖析o1模型的特点、背后的原理,以及一些有趣的八卦信息。
403 73
|
2月前
|
SQL 机器学习/深度学习 人工智能
今日 AI 开源|共 4 项|DeepSeek 推出新一代 AI 推理模型,实力比肩 OpenAI o1-preview!
本文介绍了四个最新的 AI 开源项目,涵盖多模态生成式 AI、自然语言到 SQL 转化、多模态数学推理和复杂逻辑推理等多个领域,为 AI 应用开发提供了丰富的资源和工具。
195 0
今日 AI 开源|共 4 项|DeepSeek 推出新一代 AI 推理模型,实力比肩 OpenAI o1-preview!
|
3月前
|
自然语言处理 PyTorch 算法框架/工具
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
【10月更文挑战第1天】随着深度学习技术的进步,预训练模型已成为自然语言处理(NLP)领域的常见实践。这些模型通过大规模数据集训练获得通用语言表示,但需进一步微调以适应特定任务。本文通过简化流程和示例代码,介绍了如何选择预训练模型(如BERT),并利用Python库(如Transformers和PyTorch)进行微调。文章详细说明了数据准备、模型初始化、损失函数定义及训练循环等关键步骤,并提供了评估模型性能的方法。希望本文能帮助读者更好地理解和实现模型微调。
118 2
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!