BERT模型基本理念、工作原理、配置讲解(图文解释)

简介: BERT模型基本理念、工作原理、配置讲解(图文解释)

一、BERT的基本理念

BERT是Birdirectional Encoder Representation from Transformers的缩写,意为多Transformer的双向编码器表示法,它是由谷歌发布的先进的嵌入模型,BERT是自然语言处理领域的一个重大突破,它在许多自然语言处理任务中取得了突出的成果,比如问答任务,文本生成,句子分类等等,BERT成功的一个主要原因是,它是基于上下文的嵌入模型,这是它与其他流行的嵌入模型的最大不同,首先让我么了解有上下文的嵌入模型和无上下文的嵌入模型之间的区别,如以下两个句子

A:he got bit by python(他被蟒蛇咬了)

B:python is my favorite programming lauguage(python是我最喜爱的编程语言)

如果使用上下文无关的的嵌入模型进行计算单词python的嵌入值,则两个句子中python嵌入值相同,因为它会忽略语境

BERT是一个基于上下文的模型,它先理解预警,然后根据上下文生成该词的嵌入值,对于上面两个句子它将生成python不同的嵌入值,BERT将该句中的每个单词与句子中的所有单词相关联,以了解每个单词的上下文含义

由此可见,与上下文无关的模型生成的静态嵌入不同,BERT能够根据语境生成动态嵌入

二、BERT的工作原理

顾名思义,BERT是基于Transformer的,我们可以把它看成只有编码器的Transformer

Transformer的编码器是双向的,它可以从两个方向读取一个句子,因此BERT由Transformer获得双向编码器特征,通过BERT模型,对于一个给定的句子,我们可以获得每个单词的上下文特征

三、BERT的配置

BERT的研究人员在发布该模型是提出了两种标准配置

BERT-base

BERT-large

1:BERT-base

它由十二层编码器叠加而成,每层编码器都使用十二个注意力头,其中前馈网络层由768个隐藏神经元组成,所以它得到的特征向量的大小为768

我们使用符号来表示上述内容

编码器的层数用L表示

注意力头的数量用A表示

隐藏神经元的数量用H表示

它的网络参数总数可达1.1亿个

2:BERT-large

该模型由二十四层编码器叠加而成,每层编码器都使用十六个注意力头,其中前馈网络层包含1024个隐藏神经元,所以得到的特征向量大小为1024

它的网络参数可达3.4亿个

3:BERT的其他配置

除了上述两种标准配置外,BERT还有多种不同的配置,下面列举一些小型配置

BERT-tiny L=2 H=128

BERT-mini L=4 H=256

BERT-small L=4 H=512

BERT-medium L=8 H=512

在计算资源有限的情况下,我们可以使用较小的BERT配置,但是标准的BERT配置可以得到更准确的结果并且应用更为广泛

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
1月前
|
自然语言处理 PyTorch 算法框架/工具
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
【10月更文挑战第1天】随着深度学习技术的进步,预训练模型已成为自然语言处理(NLP)领域的常见实践。这些模型通过大规模数据集训练获得通用语言表示,但需进一步微调以适应特定任务。本文通过简化流程和示例代码,介绍了如何选择预训练模型(如BERT),并利用Python库(如Transformers和PyTorch)进行微调。文章详细说明了数据准备、模型初始化、损失函数定义及训练循环等关键步骤,并提供了评估模型性能的方法。希望本文能帮助读者更好地理解和实现模型微调。
68 2
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
|
1月前
|
机器学习/深度学习 自然语言处理 知识图谱
|
29天前
|
机器学习/深度学习 自然语言处理 算法
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
85 0
|
2月前
|
搜索推荐 算法
模型小,还高效!港大最新推荐系统EasyRec:零样本文本推荐能力超越OpenAI、Bert
【9月更文挑战第21天】香港大学研究者开发了一种名为EasyRec的新推荐系统,利用语言模型的强大文本理解和生成能力,解决了传统推荐算法在零样本学习场景中的局限。EasyRec通过文本-行为对齐框架,结合对比学习和协同语言模型调优,提升了推荐准确性。实验表明,EasyRec在多个真实世界数据集上的表现优于现有模型,但其性能依赖高质量文本数据且计算复杂度较高。论文详见:http://arxiv.org/abs/2408.08821
57 7
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
|
3月前
|
算法 异构计算
自研分布式训练框架EPL问题之帮助加速Bert Large模型的训练如何解决
自研分布式训练框架EPL问题之帮助加速Bert Large模型的训练如何解决
|
3月前
|
数据采集 人工智能 数据挖掘
2021 第五届“达观杯” 基于大规模预训练模型的风险事件标签识别】3 Bert和Nezha方案
2021第五届“达观杯”基于大规模预训练模型的风险事件标签识别比赛中使用的NEZHA和Bert方案,包括预训练、微调、模型融合、TTA测试集数据增强以及总结和反思。
43 0
|
6月前
|
机器学习/深度学习 人工智能 开发工具
如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face
Hugging Face是一个机器学习(ML)和数据科学平台和社区,帮助用户构建、部署和训练机器学习模型。它提供基础设施,用于在实时应用中演示、运行和部署人工智能(AI)。用户还可以浏览其他用户上传的模型和数据集。Hugging Face通常被称为机器学习界的GitHub,因为它让开发人员公开分享和测试他们所训练的模型。 本次分享如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face。
如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face
|
6月前
|
PyTorch 算法框架/工具
Bert Pytorch 源码分析:五、模型架构简图 REV1
Bert Pytorch 源码分析:五、模型架构简图 REV1
91 0
|
6月前
|
PyTorch 算法框架/工具
Bert Pytorch 源码分析:五、模型架构简图
Bert Pytorch 源码分析:五、模型架构简图
65 0