利用概率学实现组合优化层,新研究构建Julia开源包InferOpt.jl

简介: 利用概率学实现组合优化层,新研究构建Julia开源包InferOpt.jl

从概率学的角度实现 CO 层,有助于构建近似微分和结构化损失函数。

机器学习 (ML) 和组合优化 (CO) 是现代工业流程的两个重要组成部分。ML 方法能从嘈杂的数据中提取有意义的信息,而 CO 可以在高维受限环境中做出决策。在许多情况下,我们希望将这两种工具结合使用,例如从数据中生成预测,然后使用这些预测做出优化决策。因此,混合 ML-CO pipeline 成为一个新兴的研究方向。


然而这里存在两个问题。首先,CO 问题的解通常表现为其目标参数的分段常函数,而 ML pipeline 通常使用随机梯度下降进行训练,因此斜率是非常关键的。其次,标准的 ML 损失在组合环境中效果不佳。

此外,组合优化层(CO 层)往往缺乏良好的实现。近日一项新研究从概率学的角度提出了实现 CO 层的方法,有助于近似微分和结构化损失的构建。


论文地址:https://arxiv.org/abs/2207.13513

基于这种思路,该研究提出了一个开源的 Julia 包——InferOpt.jl,它的功能包括:

  • 允许将任何具有线性目标函数的 CO oracle 转换为可微层;
  • 定义损失函数来训练包含可微层的 pipeline。



InferOpt.jl 开源包地址:https://github.com/axelparmentier/inferopt.jl

InferOpt.jl 适用于任意优化算法,并且与 Julia 的 ML 生态系统完全兼容。研究团队使用视频游戏的地图寻路问题来展示它的能力。

推理问题的关键是预测给定输入的输出,这需要了解每个 ML 层的参数。而学习问题旨在找到在推理过程中导致「良好」输出的参数。如下等式 (1) 所示,现有的「CO oracle」代表可以解决优化问题的算法,包括基于求解器和手工的算法。


而层的定义是指我们可以使用自动微分 (AD) 计算有意义的导数,但现有 CO oracle 很少与 AD 兼容,并且导数几乎处处为零,没有可利用的斜率信息。

因此,此前 CO oracle 还不是层,该研究的重点就是利用概率学的知识将其变成一个层。现代 ML 库提供了丰富的基本构建块,允许用户组装和训练复杂的 pipeline。该研究试图利用这些库来创建混合 ML-CO pipeline,并主要解决了两个问题:

  • 将 CO oracle 转换为可用层;
  • 找到合适的 ML 损失函数,避免忽略潜在的优化问题。


感兴趣的读者可以阅读论文原文,了解更多研究细节。

相关文章
|
6月前
|
机器学习/深度学习 人工智能 算法
人工智能中数据组合采样、特征层、算法层的讲解(图文详解)
人工智能中数据组合采样、特征层、算法层的讲解(图文详解)
153 0
|
数据库
OVS 总体架构、源码结构及数据流程全面解析
在前文「从 Bridge 到 OVS」中,我们已经对 OVS 进行了一番探索。本文决定从 OVS 的整体架构到各个组件都进行一个详细的介绍。 OVS 架构 OVS 是产品级的虚拟交换机,大量应用在生产环境中,支撑整个数据中心虚拟网络的运转。
4353 0
|
3月前
|
自然语言处理
评估数据集CGoDial问题之UniMSE框架将MSA和ERC统一的问题如何解决
评估数据集CGoDial问题之UniMSE框架将MSA和ERC统一的问题如何解决
|
4月前
|
机器学习/深度学习 移动开发 自然语言处理
【YOLOv8改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点
【YOLOv8改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点
|
4月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLOv8改进 - 注意力机制】HCF-Net 之 DASI: 维度感知选择性整合模块 | 小目标
YOLO目标检测专栏介绍了HCF-Net,一种针对红外小目标检测的深度学习模型,包含PPA、DASI和MDCR模块。PPA利用多分支注意力捕获多层次特征,DASI实现自适应特征融合,MDCR通过深度可分离卷积细化空间特征。HCF-Net在SIRST数据集上的实验超越其他模型。论文和代码可在提供的链接中找到。DASI模块通过信道分区选择机制动态融合高维和低维特征。YOLOv8引入了DASI结构,结合不同尺度特征以增强小目标检测。更多配置细节参见相关链接。
|
6月前
|
Python
python隶属关系图模型:基于模型的网络中密集重叠社区检测方法
python隶属关系图模型:基于模型的网络中密集重叠社区检测方法
|
6月前
|
算法 Go 区块链
YOLOD也来啦 | 优化YOLOv5样本匹配,顺带设计了全新的模块
YOLOD也来啦 | 优化YOLOv5样本匹配,顺带设计了全新的模块
76 0
|
数据可视化 安全 项目管理
【投资组合管理】使用 TIME 框架优化软件组合
【投资组合管理】使用 TIME 框架优化软件组合
|
机器学习/深度学习 数据采集 人工智能
中科大提出统一输入过滤框架InFi:首次理论分析可过滤性,支持全数据模态
中科大提出统一输入过滤框架InFi:首次理论分析可过滤性,支持全数据模态
239 0
|
机器学习/深度学习 并行计算 算法
像Transformer一样思考!DeepMind发布全新模型设计工具Tracr:从可解释逻辑反向搭建模型
像Transformer一样思考!DeepMind发布全新模型设计工具Tracr:从可解释逻辑反向搭建模型
196 0