每日学术速递4.30

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 具有指令微调的大型语言模型 (LLM) 展示了卓越的生成能力。然而,这些模型是资源密集型的。为了缓解这个问题,我们探索从指令调整的 LLM 中提炼知识到更小的 LLM。为此,我们基于现有指令和新生成的指令精心开发了大量 2.58M 指令集。

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理

Subjects: cs.CV


1.Masked Frequency Modeling for Self-Supervised Visual Pre-Training(ICLR 2023)

4ed757b6874ae3aac4d616d21582e8f8.png

标题:用于自监督视觉预训练的掩蔽频率建模

作者:Jiahao Xie, Wei Li, Xiaohang Zhan, Ziwei Liu, Yew Soon Ong, Chen Change Loy

文章链接:https://arxiv.org/abs/2206.07706

项目代码:https://github.com/Jiahao000/MFM

27c861b92b6d49bccf0e9ee7dddc4a26.png

34923d65d9bb91e92f9abf19ab0779f0.png

ae5ab0dbef76ec96c1ae435c97db8d50.png

eb2b62a1c2a750cd7d35b0fa5dc736b2.png


摘要:

       我们提出了掩蔽频率建模 (MFM),这是一种基于频域的统一方法,用于视觉模型的自监督预训练。在本文中,我们没有将掩码标记随机插入到空间域的输入嵌入中,而是将视角转移到频域。具体来说,MFM 首先屏蔽掉输入图像的一部分频率分量,然后预测频谱上缺失的频率。我们的主要见解是,由于存在大量空间冗余,预测频域中的掩码分量更适合揭示底层图像模式,而不是预测空间域中的掩码块。我们的研究结果表明,通过正确配置掩码和预测策略,高频成分中的结构信息和低频对应物之间的低级统计信息都有助于学习良好的表示。MFM 首次证明,对于 ViT 和 CNN,即使不使用以下任何一种,一个简单的非 Siamese 框架也可以学习有意义的表示:(i)额外数据,(ii)额外模型,(iii)mask token。图像分类和语义分割的实验结果,以及几个鲁棒性基准测试表明,与最近的蒙版图像建模方法相比,MFM 具有竞争力的性能和先进的鲁棒性。此外,我们还从统一频率的角度全面研究了经典图像恢复任务对表示学习的有效性,并揭示了它们与我们的 MFM 方法的有趣关系。

Subjects: cs.LG


2.AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head

efa66d154ebd420f5288d80bf5bc0550.png

标题:AudioGPT:理解和生成语音、音乐、声音和说话头

作者:Rongjie Huang, Mingze Li, Dongchao Yang, Jiatong Shi, Xuankai Chang

文章链接:https://arxiv.org/abs/2304.12995

项目代码:https://github.com/AIGC-Audio/AudioGPT

3770cbcf5eb1e29f1d15513c23219215.png

713f120249727dd326ba4d1cffa47218.png

cd268fa0bfa0e2bc96b7a292d146b7dc.png

摘要:

       大型语言模型 (LLM) 在各种领域和任务中展现出非凡的能力,挑战着我们对学习和认知的理解。尽管最近取得了成功,但目前的 LLM 无法处理复杂的音频信息或进行口头对话(如 Siri 或 Alexa)。在这项工作中,我们提出了一个名为 AudioGPT 的多模态 AI 系统,它通过 1) 基础模型来补充 LLM(即 ChatGPT),以处理复杂的音频信息并解决大量的理解和生成任务;2) 支持语音对话的输入/输出接口(ASR、TTS)。随着对评估人类意图理解和与基础模型合作的多模式 LLM 的需求不断增加,我们概述了原则和过程,并在一致性、能力和稳健性方面测试了 AudioGPT。实验结果证明了 AudioGPT 在解决 AI 任务方面的能力,包括在多轮对话中理解和生成语音、音乐、声音和说话的头部,这使人类能够前所未有地轻松创建丰富多样的音频内容。

Subjects: cs.CL


3.LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions


7d6113a923e7c25bd744d2737e50c25c.png

标题:LaMini-LM:来自大规模指令的各种提炼模型

作者:Minghao Wu, Abdul Waheed, Chiyu Zhang, Muhammad Abdul-Mageed, Alham Fikri Aji

文章链接:https://arxiv.org/abs/2304.14402

项目代码:https://github.com/mbzuai-nlp/LaMini-LM

001c9f22fb9d541dffe5be8274d18086.png

886a530a22fd0d3d15402fccaa9c6d29.png

2f934f9378312c7a5db8348786a6087d.png

7f4db5737373c9cff4800a9debd242cd.png

摘要:

       具有指令微调的大型语言模型 (LLM) 展示了卓越的生成能力。然而,这些模型是资源密集型的。为了缓解这个问题,我们探索从指令调整的 LLM 中提炼知识到更小的 LLM。为此,我们基于现有指令和新生成的指令精心开发了大量 2.58M 指令集。除了规模庞大之外,我们还设计了涵盖广泛主题的说明以确保。对我们的指令数据的彻底调查证明了它们的多样性,我们使用 gpt-3.5-turbo 为这些指令生成响应。然后,我们利用这些指令来调整大量模型,称为 LaMini-LM,大小不一,来自编码器-解码器以及仅解码器系列。我们自动(在 15 个不同的 NLP 基准测试中)和手动评估我们的模型。结果表明,我们提出的 LaMini-LM 与竞争基线相当,但尺寸却小了近 10 倍。

目录
相关文章
|
机器学习/深度学习 自然语言处理 算法
每日学术速递2.21
大规模文本到图像 (T2I) 模型令人难以置信的生成能力已经证明了学习复杂结构和有意义的语义的强大能力。然而,仅仅依靠文本提示并不能充分利用模型学到的知识,尤其是在需要灵活准确的结构控制时。在本文中,我们的目标是“挖掘”出 T2I 模型隐式学习的能力,然后显式地使用它们来更细粒度地控制生成。
155 0
|
机器学习/深度学习 自然语言处理 测试技术
每日学术速递3.20
大型语言模型 (LLM) 可以通过生成中间思维链 (CoT) 推理步骤在少镜头和零镜头设置中执行复杂推理。此外,每个推理步骤都可以依赖外部工具来支持超出核心 LLM 功能(例如搜索/运行代码)的计算。之前关于 CoT 提示和工具使用的工作通常需要手工制作特定于任务的演示,并仔细编写模型生成与工具使用的交错脚本。
204 0
每日学术速递3.20
|
机器学习/深度学习 自然语言处理 安全
每日学术速递2.27
视觉知识感知问答 (Knowledge-aware question answering, KAQA) 要求模型通过知识库回答问题,这对于开放域 QA 和特定域 QA 都是必不可少的,尤其是当仅靠语言模型无法提供所需的所有知识时。尽管最近的 KAQA 系统倾向于整合来自预训练语言模型 (PLM) 的语言知识和来自知识图 (KG) 的事实知识来回答复杂问题,但在有效融合来自 PLM 和 KG 的表征方面存在瓶颈,因为(i) 它们之间的语义和分布差距,以及 (ii) 对两种模式提供的知识进行联合推理的困难。
136 0
|
机器学习/深度学习 自然语言处理 计算机视觉
每日学术速递3.21
随着神经辐射场 (NeRFs) 的引入,新颖的视图合成最近取得了巨大飞跃。NeRF 的核心是提出每个 3D 点都可以发出辐射,从而允许使用可区分的体积渲染进行视图合成。虽然神经辐射场可以准确地表示用于计算图像渲染的 3D 场景,但 3D 网格仍然是大多数计算机图形和模拟管道支持的主要场景表示,支持实时渲染和基于物理的模拟等任务。
157 0
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递4.21
大型语言模型(LLM)在各种具有涌现能力的自然语言处理任务中取得了显着进步。然而,他们面临着固有的局限性,例如无法访问最新信息、无法使用外部工具或进行精确的数学推理。在本文中,我们介绍了 Chameleon,这是一种即插即用的组合推理框架,可增强 LLM 以帮助应对这些挑战。
193 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递3.8
扩散模型(DM)已成为生成模型的新趋势,并展示了强大的条件合成能力。其中,在大规模图像文本对上预训练的文本到图像扩散模型可通过可定制的提示高度控制。与专注于低级属性和细节的无条件生成模型不同,由于视觉语言预训练,文本到图像扩散模型包含更多高级知识。在本文中,我们提出了 VPD(具有预训练扩散模型的视觉感知),这是一种在视觉感知任务中利用预训练文本到图像扩散模型的语义信息的新框架。我们没有在基于扩散的管道中使用预训练的去噪自动编码器,而是简单地将其用作主干,旨在研究如何充分利用所学知识。
143 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递5.10
由于对各种可能的自然语言问题进行概括的挑战,基于知识库的问答被认为是一个难题。此外,不同知识库之间知识库模式项的异质性通常需要对不同知识库问答 (KBQA) 数据集进行专门培训。为了使用统一的免训练框架处理各种 KBQA 数据集的问题,我们提出了 KB-BINDER,它首次实现了对 KBQA 任务的少样本上下文学习
305 0
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递4.4
我们对 Embodied AI 的预训练视觉表示 (PVR) 或视觉“基础模型”进行了最大、最全面的实证研究。首先,我们策划了 CortexBench,它由 17 项不同的任务组成,涵盖运动、导航、灵巧和移动操作。接下来,我们系统地评估现有的 PVR,发现没有一个具有普遍优势。为了研究预训练数据规模和多样性的影响
172 0
|
机器学习/深度学习 存储 自然语言处理
每日学术速递5.2
现有的深度视频模型受限于特定任务、固定的输入输出空间和较差的泛化能力,难以在真实场景中部署。在本文中,我们提出了我们对多模态和多功能视频理解的愿景,并提出了一个原型系统 \system
183 0
|
机器学习/深度学习 自然语言处理 测试技术
每日学术速递4.25
场景理解的一个长期目标是获得可解释和可编辑的表示,这些表示可以直接从原始单目 RGB-D 视频构建,而不需要专门的硬件设置或先验。在存在多个移动和/或变形物体的情况下,该问题更具挑战性。传统方法通过混合简化、场景先验、预训练模板或已知变形模型来处理设置。
236 0