每日学术速递4.30

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 具有指令微调的大型语言模型 (LLM) 展示了卓越的生成能力。然而,这些模型是资源密集型的。为了缓解这个问题,我们探索从指令调整的 LLM 中提炼知识到更小的 LLM。为此,我们基于现有指令和新生成的指令精心开发了大量 2.58M 指令集。

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理

Subjects: cs.CV


1.Masked Frequency Modeling for Self-Supervised Visual Pre-Training(ICLR 2023)

4ed757b6874ae3aac4d616d21582e8f8.png

标题:用于自监督视觉预训练的掩蔽频率建模

作者:Jiahao Xie, Wei Li, Xiaohang Zhan, Ziwei Liu, Yew Soon Ong, Chen Change Loy

文章链接:https://arxiv.org/abs/2206.07706

项目代码:https://github.com/Jiahao000/MFM

27c861b92b6d49bccf0e9ee7dddc4a26.png

34923d65d9bb91e92f9abf19ab0779f0.png

ae5ab0dbef76ec96c1ae435c97db8d50.png

eb2b62a1c2a750cd7d35b0fa5dc736b2.png


摘要:

       我们提出了掩蔽频率建模 (MFM),这是一种基于频域的统一方法,用于视觉模型的自监督预训练。在本文中,我们没有将掩码标记随机插入到空间域的输入嵌入中,而是将视角转移到频域。具体来说,MFM 首先屏蔽掉输入图像的一部分频率分量,然后预测频谱上缺失的频率。我们的主要见解是,由于存在大量空间冗余,预测频域中的掩码分量更适合揭示底层图像模式,而不是预测空间域中的掩码块。我们的研究结果表明,通过正确配置掩码和预测策略,高频成分中的结构信息和低频对应物之间的低级统计信息都有助于学习良好的表示。MFM 首次证明,对于 ViT 和 CNN,即使不使用以下任何一种,一个简单的非 Siamese 框架也可以学习有意义的表示:(i)额外数据,(ii)额外模型,(iii)mask token。图像分类和语义分割的实验结果,以及几个鲁棒性基准测试表明,与最近的蒙版图像建模方法相比,MFM 具有竞争力的性能和先进的鲁棒性。此外,我们还从统一频率的角度全面研究了经典图像恢复任务对表示学习的有效性,并揭示了它们与我们的 MFM 方法的有趣关系。

Subjects: cs.LG


2.AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head

efa66d154ebd420f5288d80bf5bc0550.png

标题:AudioGPT:理解和生成语音、音乐、声音和说话头

作者:Rongjie Huang, Mingze Li, Dongchao Yang, Jiatong Shi, Xuankai Chang

文章链接:https://arxiv.org/abs/2304.12995

项目代码:https://github.com/AIGC-Audio/AudioGPT

3770cbcf5eb1e29f1d15513c23219215.png

713f120249727dd326ba4d1cffa47218.png

cd268fa0bfa0e2bc96b7a292d146b7dc.png

摘要:

       大型语言模型 (LLM) 在各种领域和任务中展现出非凡的能力,挑战着我们对学习和认知的理解。尽管最近取得了成功,但目前的 LLM 无法处理复杂的音频信息或进行口头对话(如 Siri 或 Alexa)。在这项工作中,我们提出了一个名为 AudioGPT 的多模态 AI 系统,它通过 1) 基础模型来补充 LLM(即 ChatGPT),以处理复杂的音频信息并解决大量的理解和生成任务;2) 支持语音对话的输入/输出接口(ASR、TTS)。随着对评估人类意图理解和与基础模型合作的多模式 LLM 的需求不断增加,我们概述了原则和过程,并在一致性、能力和稳健性方面测试了 AudioGPT。实验结果证明了 AudioGPT 在解决 AI 任务方面的能力,包括在多轮对话中理解和生成语音、音乐、声音和说话的头部,这使人类能够前所未有地轻松创建丰富多样的音频内容。

Subjects: cs.CL


3.LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions


7d6113a923e7c25bd744d2737e50c25c.png

标题:LaMini-LM:来自大规模指令的各种提炼模型

作者:Minghao Wu, Abdul Waheed, Chiyu Zhang, Muhammad Abdul-Mageed, Alham Fikri Aji

文章链接:https://arxiv.org/abs/2304.14402

项目代码:https://github.com/mbzuai-nlp/LaMini-LM

001c9f22fb9d541dffe5be8274d18086.png

886a530a22fd0d3d15402fccaa9c6d29.png

2f934f9378312c7a5db8348786a6087d.png

7f4db5737373c9cff4800a9debd242cd.png

摘要:

       具有指令微调的大型语言模型 (LLM) 展示了卓越的生成能力。然而,这些模型是资源密集型的。为了缓解这个问题,我们探索从指令调整的 LLM 中提炼知识到更小的 LLM。为此,我们基于现有指令和新生成的指令精心开发了大量 2.58M 指令集。除了规模庞大之外,我们还设计了涵盖广泛主题的说明以确保。对我们的指令数据的彻底调查证明了它们的多样性,我们使用 gpt-3.5-turbo 为这些指令生成响应。然后,我们利用这些指令来调整大量模型,称为 LaMini-LM,大小不一,来自编码器-解码器以及仅解码器系列。我们自动(在 15 个不同的 NLP 基准测试中)和手动评估我们的模型。结果表明,我们提出的 LaMini-LM 与竞争基线相当,但尺寸却小了近 10 倍。

目录
相关文章
|
机器学习/深度学习 自然语言处理 大数据
每日学术速递3.7
由 Hinton 等人介绍。2012 年,dropout 作为防止神经网络过度拟合的正则化项经受住了时间的考验。在这项研究中,我们证明了在训练开始时使用 dropout 也可以减轻欠拟合。在早期阶段,我们发现 dropout 减少了小批量梯度的方向方差,并有助于将小批量梯度与整个数据集的梯度对齐。这有助于抵消 SGD 的随机性并限制个别批次对模型训练的影响。
112 0
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递4.1
本文介绍了一种名为 F²-NeRF (Fast-Free-NeRF) 的新型基于网格的 NeRF,用于新型视图合成,它支持任意输入摄像机轨迹,并且只需几分钟的训练时间。现有的基于网格的快速 NeRF 训练框架,如 Instant-NGP、Plenoxels、DVGO 或 TensoRF,主要针对有界场景设计,并依靠空间扭曲来处理无界场景。现有的两种广泛使用的空间扭曲方法仅针对前向轨迹或 360 度以对象为中心的轨迹而设计,无法处理任意轨迹。
152 0
|
机器学习/深度学习 自然语言处理 计算机视觉
每日学术速递4.7
我们引入了一种新颖的框架,可以毫不费力地训练深度立体网络,无需任何基本事实。通过利用最先进的神经渲染解决方案,我们从使用单个手持相机收集的图像序列生成立体训练数据。
134 0
|
机器学习/深度学习 机器人
每日学术速递2.23
本文探讨了动态系统中的离散形态对称性,这是生物学和机器人系统的主要特征。当系统的形态具有一个或多个对称平面时,它表现出形态对称性,描述了身体部位的重复和平衡分布。这些形态对称性意味着系统的动力学是对称的(或近似对称的),这进而在最优控制策略和所有与系统动态演化相关的本体感知和外感知测量中印记了对称性。
79 0
|
机器学习/深度学习 自然语言处理 定位技术
每日学术速递3.1
文本引导的扩散模型,如 DALLE-2、IMAGEN 和 Stable Diffusion,只要给出描述所需图像内容的简短文本提示,就能够有效地生成无穷无尽的图像。在许多情况下,图像的质量也非常高。然而,这些模型通常难以组合包含多个关键对象的场景,例如具有指定位置关系的角色。
86 0
|
机器学习/深度学习 自然语言处理 测试技术
每日学术速递4.25
场景理解的一个长期目标是获得可解释和可编辑的表示,这些表示可以直接从原始单目 RGB-D 视频构建,而不需要专门的硬件设置或先验。在存在多个移动和/或变形物体的情况下,该问题更具挑战性。传统方法通过混合简化、场景先验、预训练模板或已知变形模型来处理设置。
186 0
|
传感器 机器学习/深度学习 人工智能
每日学术速递5.12
用户可以付费查询的大型语言模型 (LLM) 数量迅速增加。我们审查了与查询流行的 LLM API 相关的成本,例如GPT-4、ChatGPT、J1-Jumbo,并发现这些模型具有异构的定价结构,费用可能相差两个数量级。特别是,在大量查询和文本上使用 LLM 可能会很昂贵。
122 0
|
机器学习/深度学习 存储 自然语言处理
每日学术速递4.17
扩散模型已被证明在生成高质量图像方面非常有效。然而,使大型预训练扩散模型适应新领域仍然是一个开放的挑战,这对于实际应用至关重要。本文提出了 DiffFit,这是一种参数高效策略,用于微调大型预训练扩散模型,从而能够快速适应新领域。DiffFit 非常简单,仅微调特定层中的偏差项和新添加的缩放因子
138 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递5.7
我们考虑重建从立体相机观察到的动态场景的问题。大多数现有的立体深度方法独立处理不同的立体帧,导致时间上不一致的深度预测。时间一致性对于身临其境的 AR 或 VR 场景尤为重要,在这些场景中,闪烁会大大降低用户体验。我们提出了 DynamicStereo,这是一种基于变换器的新型架构,用于估计立体视频的视差。
109 0
|
机器学习/深度学习 编解码 自然语言处理
每日学术速递4.20
建造一个可以通过观察人类来理解和学习互动的机器人激发了几个视觉问题。然而,尽管在静态数据集上取得了一些成功的结果,但目前的模型如何直接用在机器人上仍然不清楚。在本文中,我们旨在通过以环境为中心的方式利用人类互动视频来弥合这一差距。利用人类行为的互联网视频,我们训练了一个视觉可供性模型,该模型估计人类可能在场景中的位置和方式进行交互
109 0
下一篇
DataWorks