每日学术速递2.21

简介: 大规模文本到图像 (T2I) 模型令人难以置信的生成能力已经证明了学习复杂结构和有意义的语义的强大能力。然而,仅仅依靠文本提示并不能充分利用模型学到的知识,尤其是在需要灵活准确的结构控制时。在本文中,我们的目标是“挖掘”出 T2I 模型隐式学习的能力,然后显式地使用它们来更细粒度地控制生成。

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理

Subjects: cs.CV


1.T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models

74caae57713e551818886c1fc5d24949.png

标题:T2I-Adapter:学习Adapter,为Text-to-Image扩散模型挖掘更多可控能力

作者:Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhongang Qi, Ying Shan, XiaoHu Qie

文章链接:https://arxiv.org/abs/2302.08453v1

项目代码:hhttps://github.com/tencentarc/t2i-adapter

b3095d9280ea609ad296097b68b8a494.png

8b40c2573c0f7a84dfe5feee40ad44e5.png

165db17041d60e5169c9225d152fb8dd.png


摘要:

       大规模文本到图像 (T2I) 模型令人难以置信的生成能力已经证明了学习复杂结构和有意义的语义的强大能力。然而,仅仅依靠文本提示并不能充分利用模型学到的知识,尤其是在需要灵活准确的结构控制时。在本文中,我们的目标是“挖掘”出 T2I 模型隐式学习的能力,然后显式地使用它们来更细粒度地控制生成。具体来说,我们建议学习简单和小型的 T2I-Adapters 以对齐内部知识具有外部控制信号的T2I模型,同时冻结原有的大型T2I模型。这样,我们可以根据不同的条件训练各种适配器,实现丰富的控制和编辑效果。此外,所提出的T2I-Adapters具有实用价值的吸引人的特性,例如可组合性和泛化能力。大量实验表明,我们的 T2I-Adapter 具有良好的生成质量和广泛的应用范围。

2.3D Human Pose Lifting with Grid Convolution

7f34d35be86f932bb888641d5ea60ace.png

标题:网格卷积的 3D 人体姿态提升

作者:Yangyuxuan Kang, Yuyang Liu, Anbang Yao, Shandong Wang, Enhua Wu

文章链接:https://arxiv.org/abs/2302.08760v1

项目代码:https://github.com/osvai/gridconv

f05ed6bfc0e66ba3f7d3ce646e95df7c.png

c764d1d78c736e80224382073eb7bb42.png

31ea470eb559b92639943432de8e0f0f.png

摘要:

       现有的用于从 2D 单视图姿势回归 3D 人体姿势的提升网络通常是用基于图结构表示学习的线性层构建的。与它们形成鲜明对比的是,本文提出了网格卷积 (GridConv),它模仿了图像空间中常规卷积运算的智慧。GridConv 基于一种新颖的语义网格变换 (SGT),它利用二进制分配矩阵将不规则图形结构的人体姿势逐个关节映射到规则的编织状网格姿势表示,从而通过 GridConv 操作实现逐层特征学习。我们提供两种实现 SGT 的方法,包括手工设计和可学习设计。令人惊讶的是,这两种设计都取得了有希望的结果,而且可学习的设计更好,证明了这种新的提升表示学习公式的巨大潜力。为了提高 GridConv 编码上下文线索的能力,我们在卷积核上引入了一个注意力模块,使网格卷积操作依赖于输入、空间感知和网格特定。我们表明,我们的全卷积网格提升网络优于最先进的方法,在 (1) Human3.6M 的常规评估和 (2) MPI-INF-3DHP 的交叉评估下具有明显的利润率。

Subjects: cs.LG


3.MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation

d017aa224fda88fa946f51d9d492a2e4.png


标题:MiDi:用于分子生成的混合图和 3D 去噪扩散

作者:Clement Vignac, Nagham Osman, Laura Toni, Pascal Frossard

文章链接:https://arxiv.org/abs/2302.09048v1

项目代码:https://github.com/cvignac/midi

31c45cc13e68996c0f100b65f4a1e9c9.png

摘要:

       这项工作介绍了 MiDi,这是一种用于联合生成分子图和相应的 3D 构象异构体的扩散模型。与使用预定义规则从构象中导出分子键的现有模型相比,MiDi 使用端到端可微分模型简化了分子生成过程。实验结果证明了这种方法的好处:在复杂的 GEOM-DRUGS 数据集上,我们的模型生成的分子图明显优于基于 3D 的模型,甚至超过了直接优化键顺序有效性的专门算法。我们的代码可在 github.com/cvignac/MiDi 获得。

目录
相关文章
|
机器学习/深度学习 自然语言处理 物联网
每日学术速递4.6
大型语言模型 (LLM)(如 GPT-3 和 ChatGPT)的成功导致开发了许多具有成本效益且易于访问的替代方案,这些替代方案是通过使用特定于任务的数据(例如,ChatDoctor)微调开放访问 LLM 创建的) 或指令数据(例如,Alpaca)。在各种微调方法中,基于适配器的参数高效微调(PEFT)无疑是最吸引人的话题之一
157 0
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递3.16
本文提出了一个统一的扩散框架(称为 UniDiffuser),以在一个模型中拟合与一组多模态数据相关的所有分布。我们的关键见解是——学习边缘分布、条件分布和联合分布的扩散模型可以统一为预测扰动数据中的噪声,其中扰动水平(即时间步长)对于不同的模式可能不同。
172 0
|
机器学习/深度学习 机器人
每日学术速递2.23
本文探讨了动态系统中的离散形态对称性,这是生物学和机器人系统的主要特征。当系统的形态具有一个或多个对称平面时,它表现出形态对称性,描述了身体部位的重复和平衡分布。这些形态对称性意味着系统的动力学是对称的(或近似对称的),这进而在最优控制策略和所有与系统动态演化相关的本体感知和外感知测量中印记了对称性。
87 0
|
机器学习/深度学习 自然语言处理 物联网
每日学术速递5.1
大型语言模型 (LLM) 在各种开放式任务中展示了令人印象深刻的零样本能力,而最近的研究还探索了使用 LLM 进行多模态生成。
151 0
|
机器学习/深度学习 存储 编解码
每日学术速递2.20
将强大的生成去噪扩散模型 (DDM) 应用于图像语义编辑等下游任务通常需要微调预训练 DDM 或学习辅助编辑网络。在这项工作中,我们通过仅通过冻结 DDM 优化去噪轨迹,在各种应用程序设置上实现了 SOTA 语义控制性能。
114 0
|
机器学习/深度学习 存储 自然语言处理
每日学术速递4.9
错误信息已成为一个紧迫的问题。网络上广泛存在视觉和文本形式的虚假媒体。虽然已经提出了各种 deepfake 检测和文本假新闻检测方法,但它们仅设计用于基于二进制分类的单模态伪造,更不用说分析和推理跨不同模态的细微伪造痕迹。
139 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递4.14
我们提出了 ImageReward——第一个通用的文本到图像人类偏好奖励模型——来解决生成模型中的各种普遍问题,并使它们与人类价值观和偏好保持一致。它的训练基于我们的系统注释管道,涵盖评级和排名组件,收集了迄今为止 137k 专家比较的数据集。
160 0
|
机器学习/深度学习 编解码 自然语言处理
每日学术速递4.5
无论是通过从头到尾以固定分辨率处理视频,还是结合池化和缩小策略,现有的视频转换器都可以处理整个网络中的整个视频内容,而无需专门处理大部分冗余信息。在本文中,我们提出了一种 Supertoken Video Transformer (SVT),它结合了语义池模块 (SPM),根据视觉转换器的语义沿着视觉转换器的深度聚合潜在表示,从而减少视频输入中固有的冗余。
98 0
|
机器学习/深度学习 存储 自然语言处理
每日学术速递3.23
我们介绍了 Zero-1-to-3,这是一个框架,用于在给定单个 RGB 图像的情况下更改对象的相机视点。为了在这种欠约束的环境中执行新的视图合成,我们利用了大规模扩散模型了解自然图像的几何先验。我们的条件扩散模型使用合成数据集来学习相对相机视点的控制,这允许在指定的相机变换下生成同一对象的新图像。
103 0
|
机器学习/深度学习 存储 自然语言处理
每日学术速递4.17
扩散模型已被证明在生成高质量图像方面非常有效。然而,使大型预训练扩散模型适应新领域仍然是一个开放的挑战,这对于实际应用至关重要。本文提出了 DiffFit,这是一种参数高效策略,用于微调大型预训练扩散模型,从而能够快速适应新领域。DiffFit 非常简单,仅微调特定层中的偏差项和新添加的缩放因子
146 0