每日学术速递3.8

简介: 扩散模型(DM)已成为生成模型的新趋势,并展示了强大的条件合成能力。其中,在大规模图像文本对上预训练的文本到图像扩散模型可通过可定制的提示高度控制。与专注于低级属性和细节的无条件生成模型不同,由于视觉语言预训练,文本到图像扩散模型包含更多高级知识。在本文中,我们提出了 VPD(具有预训练扩散模型的视觉感知),这是一种在视觉感知任务中利用预训练文本到图像扩散模型的语义信息的新框架。我们没有在基于扩散的管道中使用预训练的去噪自动编码器,而是简单地将其用作主干,旨在研究如何充分利用所学知识。

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理


Subjects: cs.CV


1.Unleashing Text-to-Image Diffusion Models for Visual Perception


69ad18567cee07df9e2749e168994a46.png

标题:释放用于视觉感知的文本到图像扩散模型

作者:Wenliang Zhao, Yongming Rao, Zuyan Liu, Benlin Liu, Jie Zhou, Jiwen Lu

文章链接:https://arxiv.org/abs/2302.02814

项目代码:https://github.com/wl-zhao/VPD

873d6f5f3255c38292967932fbf470af.png

53e048ed87c135ae1caf05febc9cd642.png

497b52eb2ce73171d052a5be49d31a34.png

摘要:

       扩散模型(DM)已成为生成模型的新趋势,并展示了强大的条件合成能力。其中,在大规模图像文本对上预训练的文本到图像扩散模型可通过可定制的提示高度控制。与专注于低级属性和细节的无条件生成模型不同,由于视觉语言预训练,文本到图像扩散模型包含更多高级知识。在本文中,我们提出了 VPD(具有预训练扩散模型的视觉感知),这是一种在视觉感知任务中利用预训练文本到图像扩散模型的语义信息的新框架。我们没有在基于扩散的管道中使用预训练的去噪自动编码器,而是简单地将其用作主干,旨在研究如何充分利用所学知识。具体来说,我们使用适当的文本输入提示去噪解码器,并使用适配器改进文本特征,从而更好地与预训练阶段对齐,并使视觉内容与文本提示交互。我们还建议利用视觉特征和文本特征之间的交叉注意力图来提供明确的指导。与其他预训练方法相比,我们表明视觉语言预训练扩散模型可以使用所提出的 VPD 更快地适应下游视觉感知任务。对语义分割、参考图像分割和深度估计的大量实验证明了我们方法的有效性。值得注意的是,VPD 在 NYUv2 深度估计上达到 0.254 RMSE,在 RefCOCO-val 参考图像分割上达到 73.3% oIoU,在这两个基准上创造了新记录。

2.MobileBrick: Building LEGO for 3D Reconstruction on Mobile Devices

c6b5df0333323d45c2000053e850cf21.png

标题:MobileBrick:为移动设备上的 3D 重建搭建乐高积木

作者:Kejie Li, Jia-Wang Bian, Robert Castle, Philip H.S. Torr, Victor Adrian Prisacariu

文章链接:https://arxiv.org/abs/2303.01932

项目代码:http://code.active.vision/MobileBrick/

a00d2667b48aca59d80b1ead878cec81.png

f3df7392ed8617dd8688673caea6a243.png

690fb68081da440688219766703de5bf.png

摘要:

       高质量的 3D 地面真实形状对于 3D 对象重建评估至关重要。然而,在现实中很难创建一个对象的复制品,甚至 3D 扫描仪生成的 3D 重建也存在导致评估偏差的伪影。为了解决这个问题,我们引入了一个使用移动设备捕获的新型多视图 RGBD 数据集,其中包括对 153 个具有不同 3D 结构集的对象模型的高精度 3D 地面实况注释。我们通过使用具有已知几何形状的乐高模型作为图像捕获的 3D 结构,在不依赖高端 3D 扫描仪的情况下获得精确的 3D 地面真实形状。在移动设备上捕获的高分辨率 RGB 图像和低分辨率深度图提供的独特数据模式,与精确的 3D 几何注释相结合,为未来研究高保真 3D 重建提供了独特的机会。此外,我们在所提出的数据集上评估了一系列 3D 重建算法。

Subjects: cs.RL


3.Preference Transformer: Modeling Human Preferences using Transformers for RL(ICLR 2023)

db69cc1457c0685ef01eff7ac9d173b3.png

标题:Preference Transformer:使用 RL Transformers 模拟人类偏好

作者:Changyeon Kim, Jongjin Park, Jinwoo Shin, Honglak Lee, Pieter Abbeel, Kimin Lee

文章链接:https://arxiv.org/abs/2302.01660v2

项目代码:https://sites.google.com/view/preference-transformer

da15c08b942f967faa30dd4aee297fc1.png

6e56ee79b4e94352a8eb0818b84b70db.png

摘要:

       基于偏好的强化学习 (RL) 提供了一个框架来使用人类在两种行为之间的偏好来训练代理。然而,基于偏好的强化学习一直难以扩展,因为它需要大量的人类反馈来学习符合人类意图的奖励函数。在本文中,我们介绍了 Preference Transformer,这是一种使用转换器对人类偏好进行建模的神经架构。与假设人类判断基于对决策有同等贡献的马尔可夫奖励的先前方法不同,我们引入了一种基于非马尔可夫奖励加权和的新偏好模型。然后,我们使用堆叠因果和双向自注意层的转换器架构来设计所提出的偏好模型。我们证明 Preference Transformer 可以使用真实的人类偏好来解决各种控制任务,而之前的方法无法奏效。我们还表明,Preference Transformer 可以通过自动捕获人类决策中的时间依赖性来诱导明确指定的奖励并关注轨迹中的关键事件。

目录
相关文章
|
机器学习/深度学习 自然语言处理 PyTorch
每日学术速递2.17
近年来,大型深度学习 (DL) 模型的开发有所增加,这使得训练效率变得至关重要。通常的做法是在可用性和性能之间进行权衡。一方面,诸如 PyTorch 之类的 DL 框架使用动态图来以次优模型训练性能为代价为模型开发人员提供便利。
110 0
|
机器学习/深度学习 自然语言处理 计算机视觉
每日学术速递4.16
我们提出了 RECLIP(资源高效 CLIP),这是一种最小化 CLIP(对比语言图像预训练)计算资源占用的简单方法。受计算机视觉中从粗到精概念的启发,我们利用小图像有效地从大规模语言监督中学习,并最终使用高分辨率数据微调模型。由于视觉转换器的复杂性在很大程度上取决于输入图像的大小
187 0
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递4.4
我们对 Embodied AI 的预训练视觉表示 (PVR) 或视觉“基础模型”进行了最大、最全面的实证研究。首先,我们策划了 CortexBench,它由 17 项不同的任务组成,涵盖运动、导航、灵巧和移动操作。接下来,我们系统地评估现有的 PVR,发现没有一个具有普遍优势。为了研究预训练数据规模和多样性的影响
128 0
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递4.21
大型语言模型(LLM)在各种具有涌现能力的自然语言处理任务中取得了显着进步。然而,他们面临着固有的局限性,例如无法访问最新信息、无法使用外部工具或进行精确的数学推理。在本文中,我们介绍了 Chameleon,这是一种即插即用的组合推理框架,可增强 LLM 以帮助应对这些挑战。
177 0
|
机器学习/深度学习 存储 自然语言处理
每日学术速递5.3
用任意语音音频生成说话人肖像是数字人和虚拟世界领域的一个关键问题。一种现代的说话人脸生成方法有望实现通用的音频-嘴唇同步、良好的视频质量和高系统效率的目标。
214 0
|
自然语言处理 计算机视觉
每日学术速递3.6
本文描述了一种使用与目标数据集不一定相关的多个源数据集进行语义分割的域自适应训练方法。我们通过整合来自多个源模型的预测对象概率,提出了一种软伪标签生成方法。每个源模型的预测基于源数据集和目标数据集之间的估计域相似性进行加权,以强调在与目标更相似的源上训练的模型的贡献,并生成合理的伪标签。
128 0
|
机器学习/深度学习 自然语言处理 并行计算
每日学术速递4.13
最近基于扩散的生成器可以仅根据文本提示生成高质量的图像。但是,它们不能正确解释指定构图空间布局的指令。我们提出了一种简单的方法,无需训练或微调图像生成器即可实现稳健的布局控制。我们的技术,我们称之为布局指导,操纵模型用来连接文本和视觉信息的交叉注意层,并在给定的所需方向上引导重建
145 0
|
机器学习/深度学习 编解码 自然语言处理
每日学术速递3.29
由于模型容量有限,纯基于 MLP 的神经辐射场(基于 NeRF 的方法)在大型场景上经常会出现渲染模糊的欠拟合问题。最近的方法提出在地理上划分场景并采用多个子 NeRF 分别对每个区域进行建模,从而导致训练成本和子 NeRF 的数量随着场景的扩展而线性增加。
161 0
|
机器学习/深度学习 自然语言处理 自动驾驶
每日学术速递5.9
目标跟踪的大多数先前进展是在具有良好照明的白天场景中实现的。迄今为止,最先进的技术很难在夜间发挥其优势,从而大大阻碍了与视觉跟踪相关的无人机 (UAV) 应用的扩展
171 0
|
机器学习/深度学习 编解码 自然语言处理
每日学术速递4.10
雨雪天气去除是天气退化图像恢复中的一项专门任务,旨在消除共存的雨条纹和雪颗粒。在本文中,我们提出了 RSFormer,这是一种高效且有效的 Transformer,可以应对这一挑战。最初,我们探索了层次结构中卷积网络 (ConvNets) 和视觉变换器 (ViTs) 的接近程度,并通过实验发现它们在阶段内特征学习中的表现大致相同。
135 0