循环神经网络实战案例——实现文本情感分类

简介: 循环神经网络实战案例——实现文本情感分类

循环神经网络实现文本情感分类


目标


  1. 知道LSTM和GRU的使用方法及输入输出的格式
  2. 能够应用LSTM和GRU实现文本情感分类


1. Pytorch中LSTM和GRU模块使用


1.1 LSTM介绍


LSTM和GRU都是由torch.nn提供


通过观察文档,可知LSMT的参数,


torch.nn.LSTM(input_size,hidden_size,num_layers,batch_first,dropout,bidirectional)


  1. input_size :输入数据的形状,即embedding_dim
  2. hidden_size:隐藏层神经元的数量,即每一层有多少个LSTM单元
  3. num_layer :即RNN的中LSTM单元的层数
  4. batch_first:默认值为False,输入的数据需要[seq_len,batch,feature],如果为True,则为[batch,seq_len,feature]
  5. dropout:dropout的比例,默认值为0。dropout是一种训练过程中让部分参数随机失活的一种方式,能够提高训练速度,同时能够解决过拟合的问题。这里是在LSTM的最后一层,对每个输出进行dropout
  6. bidirectional:是否使用双向LSTM,默认是False


实例化LSTM对象之后,不仅需要传入数据,还需要前一次的h_0(前一次的隐藏状态)和c_0(前一次memory)


即:lstm(input,(h_0,c_0))


LSTM的默认输出为output, (h_n, c_n)


  1. output:(seq_len, batch, num_directions * hidden_size)—>batch_first=False
  2. h_n:(num_layers * num_directions, batch, hidden_size)
  3. c_n: (num_layers * num_directions, batch, hidden_size)


1.2 LSTM使用示例


假设数据输入为 input ,形状是[10,20],假设embedding的形状是[100,30]

则LSTM使用示例如下:

batch_size =10
seq_len = 20
embedding_dim = 30
word_vocab = 100
hidden_size = 18
num_layer = 2
#准备输入数据
input = torch.randint(low=0,high=100,size=(batch_size,seq_len))
#准备embedding
embedding  = torch.nn.Embedding(word_vocab,embedding_dim)
lstm = torch.nn.LSTM(embedding_dim,hidden_size,num_layer)
#进行mebed操作
embed = embedding(input) #[10,20,30]
#转化数据为batch_first=False
embed = embed.permute(1,0,2) #[20,10,30]
#初始化状态, 如果不初始化,torch默认初始值为全0
h_0 = torch.rand(num_layer,batch_size,hidden_size)
c_0 = torch.rand(num_layer,batch_size,hidden_size)
output,(h_1,c_1) = lstm(embed,(h_0,c_0))
#output [20,10,1*18]
#h_1 [2,10,18]
#c_1 [2,10,18]


1.3 GRU的使用示例


GRU模块torch.nn.GRU,和LSTM的参数相同,含义相同,具体可参考文档


但是输入只剩下gru(input,h_0),输出为output, h_n


其形状为:


  1. output:(seq_len, batch, num_directions * hidden_size)
  2. h_n:(num_layers * num_directions, batch, hidden_size)


大家可以使用上述代码,观察GRU的输出形式


1.4 双向LSTM


如果需要使用双向LSTM,则在实例化LSTM的过程中,需要把LSTM中的bidriectional设置为True,同时h_0和c_0使用num_layer*2


观察效果,输出为

batch_size =10 #句子的数量
seq_len = 20  #每个句子的长度
embedding_dim = 30  #每个词语使用多长的向量表示
word_vocab = 100  #词典中词语的总数
hidden_size = 18  #隐层中lstm的个数
num_layer = 2  #多少个隐藏层
input = torch.randint(low=0,high=100,size=(batch_size,seq_len))
embedding  = torch.nn.Embedding(word_vocab,embedding_dim)
lstm = torch.nn.LSTM(embedding_dim,hidden_size,num_layer,bidirectional=True)
embed = embedding(input) #[10,20,30]
#转化数据为batch_first=False
embed = embed.permute(1,0,2) #[20,10,30]
h_0 = torch.rand(num_layer*2,batch_size,hidden_size)
c_0 = torch.rand(num_layer*2,batch_size,hidden_size)
output,(h_1,c_1) = lstm(embed,(h_0,c_0))
In [135]: output.size()
Out[135]: torch.Size([20, 10, 36])
In [136]: h_1.size()
Out[136]: torch.Size([4, 10, 18])
In [137]: c_1.size()
Out[137]: torch.Size([4, 10, 18])


在单向LSTM中,最后一个time step的输出的前hidden_size个和最后一层隐藏状态h_1的输出相同,那么双向LSTM呢?


双向LSTM中:


output:按照正反计算的结果顺序在第2个维度进行拼接,正向第一个拼接反向的最后一个输出


hidden state:按照得到的结果在第0个维度进行拼接,正向第一个之后接着是反向第一个


前向的LSTM中,最后一个time step的输出的前hidden_size个和最后一层向前传播h_1的输出相同

  • 示例:
#-1是前向LSTM的最后一个,前18是前hidden_size个
In [188]: a = output[-1,:,:18]  #前项LSTM中最后一个time step的output
In [189]: b = h_1[-2,:,:]  #倒数第二个为前向
In [190]: a.size()
Out[190]: torch.Size([10, 18])
In [191]: b.size()
Out[191]: torch.Size([10, 18])
In [192]: a == b
Out[192]:
tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
       dtype=torch.uint8)


后向LSTM中,最后一个time step的输出的后hidden_size个和最后一层后向传播的h_1的输出相同

  • 示例
#0 是反向LSTM的最后一个,后18是后hidden_size个
In [196]: c = output[0,:,18:]  #后向LSTM中的最后一个输出
In [197]: d = h_1[-1,:,:] #后向LSTM中的最后一个隐藏层状态
In [198]: c == d
Out[198]:
tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
       dtype=torch.uint8)


1.5 LSTM和GRU的使用注意点


  1. 第一次调用之前,需要初始化隐藏状态,如果不初始化,默认创建全为0的隐藏状态
  2. 往往会使用LSTM or GRU 的输出的最后一维的结果,来代表LSTM、GRU对文本处理的结果,其形状为[batch, num_directions*hidden_size]。
  • 并不是所有模型都会使用最后一维的结果
  • 如果实例化LSTM的过程中,batch_first=False,则output[-1] or output[-1,:,:]可以获取最后一维
  • 如果实例化LSTM的过程中,batch_first=True,则output[:,-1,:]可以获取最后一维
  1. 如果结果是(seq_len, batch_size, num_directions * hidden_size),需要把它转化为(batch_size,seq_len, num_directions * hidden_size)的形状,不能够不是view等变形的方法,需要使用output.permute(1,0,2),即交换0和1轴,实现上述效果
  2. 使用双向LSTM的时候,往往会分别使用每个方向最后一次的output,作为当前数据经过双向LSTM的结果
  • 即:torch.cat([h_1[-2,:,:],h_1[-1,:,:]],dim=-1)
  • 最后的表示的size是[batch_size,hidden_size*2]
  1. 上述内容在GRU中同理


2. 使用LSTM完成文本情感分类


在前面,我们使用了word embedding去实现了toy级别的文本情感分类,那么现在我们在这个模型中添加上LSTM层,观察分类效果。


为了达到更好的效果,对之前的模型做如下修改


  1. MAX_LEN = 200
  2. 构建dataset的过程,把数据转化为2分类的问题,pos为1,neg为0,否则25000个样本完成10个类别的划分数据量是不够的
  3. 在实例化LSTM的时候,使用dropout=0.5,在model.eval()的过程中,dropout自动会为0


2.1 修改模型


class IMDBLstmmodel(nn.Module):
    def __init__(self):
        super(IMDBLstmmodel,self).__init__()
        self.hidden_size = 64
        self.embedding_dim = 200
        self.num_layer = 2
        self.bidriectional = True
        self.bi_num = 2 if self.bidriectional else 1
        self.dropout = 0.5
        #以上部分为超参数,可以自行修改
        self.embedding = nn.Embedding(len(ws),self.embedding_dim,padding_idx=ws.PAD) #[N,300]
        self.lstm = nn.LSTM(self.embedding_dim,self.hidden_size,self.num_layer,bidirectional=True,dropout=self.dropout)
        #使用两个全连接层,中间使用relu激活函数
        self.fc = nn.Linear(self.hidden_size*self.bi_num,20)
        self.fc2 = nn.Linear(20,2)
    def forward(self, x):
        x = self.embedding(x)
        x = x.permute(1,0,2) #进行轴交换
        h_0,c_0 = self.init_hidden_state(x.size(1))
        _,(h_n,c_n) = self.lstm(x,(h_0,c_0))
        #只要最后一个lstm单元处理的结果,这里多去的hidden state
        out = torch.cat([h_n[-2, :, :], h_n[-1, :, :]], dim=-1)
        out = self.fc(out)
        out = F.relu(out)
        out = self.fc2(out)
        return F.log_softmax(out,dim=-1)
    def init_hidden_state(self,batch_size):
        h_0 = torch.rand(self.num_layer * self.bi_num, batch_size, self.hidden_size).to(device)
        c_0 = torch.rand(self.num_layer * self.bi_num, batch_size, self.hidden_size).to(device)
        return h_0,c_0


2.2 完成训练和测试代码


为了提高程序的运行速度,可以考虑把模型放在gup上运行,那么此时需要处理一下几点:


  1. device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  2. model.to(device)
  3. 除了上述修改外,涉及计算的所有tensor都需要转化为CUDA的tensor
  4. 初始化的h_0,c_0
  5. 训练集和测试集的input,traget
  6. 在最后可以通过tensor.cpu()转化为torch的普通tensor


train_batch_size = 64
test_batch_size = 5000
# imdb_model = IMDBModel(MAX_LEN) #基础model
imdb_model = IMDBLstmmodel().to(device) #在gpu上运行,提高运行速度
# imdb_model.load_state_dict(torch.load("model/mnist_net.pkl"))
optimizer = optim.Adam(imdb_model.parameters())
criterion = nn.CrossEntropyLoss()
def train(epoch):
    mode = True
    imdb_model.train(mode)
    train_dataloader =get_dataloader(mode,train_batch_size)
    for idx,(target,input,input_lenght) in enumerate(train_dataloader):
        target = target.to(device)
        input = input.to(device)
        optimizer.zero_grad()
        output = imdb_model(input)
        loss = F.nll_loss(output,target) #traget需要是[0,9],不能是[1-10]
        loss.backward()
        optimizer.step()
        if idx %10 == 0:
            pred = torch.max(output, dim=-1, keepdim=False)[-1]
            acc = pred.eq(target.data).cpu().numpy().mean()*100.
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\t ACC: {:.6f}'.format(epoch, idx * len(input), len(train_dataloader.dataset),
                       100. * idx / len(train_dataloader), loss.item(),acc))
            torch.save(imdb_model.state_dict(), "model/mnist_net.pkl")
            torch.save(optimizer.state_dict(), 'model/mnist_optimizer.pkl')
 def test():
    mode = False
    imdb_model.eval()
    test_dataloader = get_dataloader(mode, test_batch_size)
    with torch.no_grad():
        for idx,(target, input, input_lenght) in enumerate(test_dataloader):
            target = target.to(device)
            input = input.to(device)
            output = imdb_model(input)
            test_loss  = F.nll_loss(output, target,reduction="mean")
            pred = torch.max(output,dim=-1,keepdim=False)[-1]
            correct = pred.eq(target.data).sum()
            acc = 100. * pred.eq(target.data).cpu().numpy().mean()
            print('idx: {} Test set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(idx,test_loss, correct, target.size(0),acc))
 if __name__ == "__main__":
    test()
    for i in range(10):
        train(i)
        test()


2.3 模型训练的最终输出


...
Train Epoch: 9 [20480/25000 (82%)]  Loss: 0.017165   ACC: 100.000000
Train Epoch: 9 [21120/25000 (84%)]  Loss: 0.021572   ACC: 98.437500
Train Epoch: 9 [21760/25000 (87%)]  Loss: 0.058546   ACC: 98.437500
Train Epoch: 9 [22400/25000 (90%)]  Loss: 0.045248   ACC: 98.437500
Train Epoch: 9 [23040/25000 (92%)]  Loss: 0.027622   ACC: 98.437500
Train Epoch: 9 [23680/25000 (95%)]  Loss: 0.097722   ACC: 95.312500
Train Epoch: 9 [24320/25000 (97%)]  Loss: 0.026713   ACC: 98.437500
Train Epoch: 9 [15600/25000 (100%)] Loss: 0.006082   ACC: 100.000000
idx: 0 Test set: Avg. loss: 0.8794, Accuracy: 4053/5000 (81.06%)
idx: 1 Test set: Avg. loss: 0.8791, Accuracy: 4018/5000 (80.36%)
idx: 2 Test set: Avg. loss: 0.8250, Accuracy: 4087/5000 (81.74%)
idx: 3 Test set: Avg. loss: 0.8380, Accuracy: 4074/5000 (81.48%)
idx: 4 Test set: Avg. loss: 0.8696, Accuracy: 4027/5000 (80.54%)


可以看到模型的测试准确率稳定在81%左右。


目录
相关文章
|
2天前
|
数据采集 网络协议 API
HTTP协议大揭秘!Python requests库实战,让网络请求变得简单高效
【9月更文挑战第13天】在数字化时代,互联网成为信息传输的核心平台,HTTP协议作为基石,定义了客户端与服务器间的数据传输规则。直接处理HTTP请求复杂繁琐,但Python的`requests`库提供了一个简洁强大的接口,简化了这一过程。HTTP协议采用请求与响应模式,无状态且结构化设计,使其能灵活处理各种数据交换。
25 8
|
6天前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
15天前
|
运维 安全 应用服务中间件
自动化运维的利器:Ansible入门与实战网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【8月更文挑战第30天】在当今快速发展的IT时代,自动化运维已成为提升效率、减少错误的关键。本文将介绍Ansible,一种流行的自动化运维工具,通过简单易懂的语言和实际案例,带领读者从零开始掌握Ansible的使用。我们将一起探索如何利用Ansible简化日常的运维任务,实现快速部署和管理服务器,以及如何处理常见问题。无论你是运维新手还是希望提高工作效率的资深人士,这篇文章都将为你开启自动化运维的新篇章。
|
16天前
|
Java
【实战演练】JAVA网络编程高手养成记:URL与URLConnection的实战技巧,一学就会!
【实战演练】JAVA网络编程高手养成记:URL与URLConnection的实战技巧,一学就会!
29 3
|
12天前
|
SQL 安全 网络安全
网络安全之盾:漏洞防御与加密技术的实战应用
【9月更文挑战第2天】在数字时代的浪潮中,网络安全成为保护个人隐私和企业资产的坚固盾牌。本文深入探讨了网络安全的两个核心要素:防御漏洞和加密技术。我们将从基础概念入手,逐步剖析常见的网络攻击手段,并分享如何通过实践加强安全意识。同时,提供代码示例以增强理解,旨在为读者构建一道坚不可摧的网络安全防线。
|
14天前
|
开发者 图形学 API
从零起步,深度揭秘:运用Unity引擎及网络编程技术,一步步搭建属于你的实时多人在线对战游戏平台——详尽指南与实战代码解析,带你轻松掌握网络化游戏开发的核心要领与最佳实践路径
【8月更文挑战第31天】构建实时多人对战平台是技术与创意的结合。本文使用成熟的Unity游戏开发引擎,从零开始指导读者搭建简单的实时对战平台。内容涵盖网络架构设计、Unity网络API应用及客户端与服务器通信。首先,创建新项目并选择适合多人游戏的模板,使用推荐的网络传输层。接着,定义基本玩法,如2D多人射击游戏,创建角色预制件并添加Rigidbody2D组件。然后,引入网络身份组件以同步对象状态。通过示例代码展示玩家控制逻辑,包括移动和发射子弹功能。最后,设置服务器端逻辑,处理客户端连接和断开。本文帮助读者掌握构建Unity多人对战平台的核心知识,为进一步开发打下基础。
36 0
|
14天前
|
安全 开发者 数据安全/隐私保护
Xamarin 的安全性考虑与最佳实践:从数据加密到网络防护,全面解析构建安全移动应用的六大核心技术要点与实战代码示例
【8月更文挑战第31天】Xamarin 的安全性考虑与最佳实践对于构建安全可靠的跨平台移动应用至关重要。本文探讨了 Xamarin 开发中的关键安全因素,如数据加密、网络通信安全、权限管理等,并提供了 AES 加密算法的代码示例。
27 0
|
14天前
|
SQL 安全 网络安全
网络防御前线:漏洞识别与加密技术的实战应用
【8月更文挑战第31天】在数字化浪潮下,网络安全成为守护数据资产的盾牌。本文深入浅出地探讨了网络安全漏洞的成因与对策,并结合实例展示了加密技术的应用。通过提升安全意识与实践操作,我们能够有效防范网络威胁,保护个人与企业的信息不受侵害。
|
14天前
|
安全 Apache 数据安全/隐私保护
你的Wicket应用安全吗?揭秘在Apache Wicket中实现坚不可摧的安全认证策略
【8月更文挑战第31天】在当前的网络环境中,安全性是任何应用程序的关键考量。Apache Wicket 是一个强大的 Java Web 框架,提供了丰富的工具和组件,帮助开发者构建安全的 Web 应用程序。本文介绍了如何在 Wicket 中实现安全认证,
28 0
|
14天前
|
安全 算法 网络安全
网络安全之盾:漏洞防护与加密技术的实战解析
【8月更文挑战第31天】本文将通过浅显易懂的方式,带领读者了解网络安全的基石——漏洞防护和加密技术。我们将从基础概念入手,逐步深入到实际应用,不仅分享理论知识,更提供代码示例,帮助读者构建起自己的网络安全防线。无论你是初学者还是有一定基础的技术人员,这篇文章都将为你的安全知识库添砖加瓦。