循环神经网络实战案例——实现文本情感分类

简介: 循环神经网络实战案例——实现文本情感分类

循环神经网络实现文本情感分类


目标


  1. 知道LSTM和GRU的使用方法及输入输出的格式
  2. 能够应用LSTM和GRU实现文本情感分类


1. Pytorch中LSTM和GRU模块使用


1.1 LSTM介绍


LSTM和GRU都是由torch.nn提供


通过观察文档,可知LSMT的参数,


torch.nn.LSTM(input_size,hidden_size,num_layers,batch_first,dropout,bidirectional)


  1. input_size :输入数据的形状,即embedding_dim
  2. hidden_size:隐藏层神经元的数量,即每一层有多少个LSTM单元
  3. num_layer :即RNN的中LSTM单元的层数
  4. batch_first:默认值为False,输入的数据需要[seq_len,batch,feature],如果为True,则为[batch,seq_len,feature]
  5. dropout:dropout的比例,默认值为0。dropout是一种训练过程中让部分参数随机失活的一种方式,能够提高训练速度,同时能够解决过拟合的问题。这里是在LSTM的最后一层,对每个输出进行dropout
  6. bidirectional:是否使用双向LSTM,默认是False


实例化LSTM对象之后,不仅需要传入数据,还需要前一次的h_0(前一次的隐藏状态)和c_0(前一次memory)


即:lstm(input,(h_0,c_0))


LSTM的默认输出为output, (h_n, c_n)


  1. output:(seq_len, batch, num_directions * hidden_size)—>batch_first=False
  2. h_n:(num_layers * num_directions, batch, hidden_size)
  3. c_n: (num_layers * num_directions, batch, hidden_size)


1.2 LSTM使用示例


假设数据输入为 input ,形状是[10,20],假设embedding的形状是[100,30]

则LSTM使用示例如下:

batch_size =10
seq_len = 20
embedding_dim = 30
word_vocab = 100
hidden_size = 18
num_layer = 2
#准备输入数据
input = torch.randint(low=0,high=100,size=(batch_size,seq_len))
#准备embedding
embedding  = torch.nn.Embedding(word_vocab,embedding_dim)
lstm = torch.nn.LSTM(embedding_dim,hidden_size,num_layer)
#进行mebed操作
embed = embedding(input) #[10,20,30]
#转化数据为batch_first=False
embed = embed.permute(1,0,2) #[20,10,30]
#初始化状态, 如果不初始化,torch默认初始值为全0
h_0 = torch.rand(num_layer,batch_size,hidden_size)
c_0 = torch.rand(num_layer,batch_size,hidden_size)
output,(h_1,c_1) = lstm(embed,(h_0,c_0))
#output [20,10,1*18]
#h_1 [2,10,18]
#c_1 [2,10,18]


1.3 GRU的使用示例


GRU模块torch.nn.GRU,和LSTM的参数相同,含义相同,具体可参考文档


但是输入只剩下gru(input,h_0),输出为output, h_n


其形状为:


  1. output:(seq_len, batch, num_directions * hidden_size)
  2. h_n:(num_layers * num_directions, batch, hidden_size)


大家可以使用上述代码,观察GRU的输出形式


1.4 双向LSTM


如果需要使用双向LSTM,则在实例化LSTM的过程中,需要把LSTM中的bidriectional设置为True,同时h_0和c_0使用num_layer*2


观察效果,输出为

batch_size =10 #句子的数量
seq_len = 20  #每个句子的长度
embedding_dim = 30  #每个词语使用多长的向量表示
word_vocab = 100  #词典中词语的总数
hidden_size = 18  #隐层中lstm的个数
num_layer = 2  #多少个隐藏层
input = torch.randint(low=0,high=100,size=(batch_size,seq_len))
embedding  = torch.nn.Embedding(word_vocab,embedding_dim)
lstm = torch.nn.LSTM(embedding_dim,hidden_size,num_layer,bidirectional=True)
embed = embedding(input) #[10,20,30]
#转化数据为batch_first=False
embed = embed.permute(1,0,2) #[20,10,30]
h_0 = torch.rand(num_layer*2,batch_size,hidden_size)
c_0 = torch.rand(num_layer*2,batch_size,hidden_size)
output,(h_1,c_1) = lstm(embed,(h_0,c_0))
In [135]: output.size()
Out[135]: torch.Size([20, 10, 36])
In [136]: h_1.size()
Out[136]: torch.Size([4, 10, 18])
In [137]: c_1.size()
Out[137]: torch.Size([4, 10, 18])


在单向LSTM中,最后一个time step的输出的前hidden_size个和最后一层隐藏状态h_1的输出相同,那么双向LSTM呢?


双向LSTM中:


output:按照正反计算的结果顺序在第2个维度进行拼接,正向第一个拼接反向的最后一个输出


hidden state:按照得到的结果在第0个维度进行拼接,正向第一个之后接着是反向第一个


前向的LSTM中,最后一个time step的输出的前hidden_size个和最后一层向前传播h_1的输出相同

  • 示例:
#-1是前向LSTM的最后一个,前18是前hidden_size个
In [188]: a = output[-1,:,:18]  #前项LSTM中最后一个time step的output
In [189]: b = h_1[-2,:,:]  #倒数第二个为前向
In [190]: a.size()
Out[190]: torch.Size([10, 18])
In [191]: b.size()
Out[191]: torch.Size([10, 18])
In [192]: a == b
Out[192]:
tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
       dtype=torch.uint8)


后向LSTM中,最后一个time step的输出的后hidden_size个和最后一层后向传播的h_1的输出相同

  • 示例
#0 是反向LSTM的最后一个,后18是后hidden_size个
In [196]: c = output[0,:,18:]  #后向LSTM中的最后一个输出
In [197]: d = h_1[-1,:,:] #后向LSTM中的最后一个隐藏层状态
In [198]: c == d
Out[198]:
tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
       dtype=torch.uint8)


1.5 LSTM和GRU的使用注意点


  1. 第一次调用之前,需要初始化隐藏状态,如果不初始化,默认创建全为0的隐藏状态
  2. 往往会使用LSTM or GRU 的输出的最后一维的结果,来代表LSTM、GRU对文本处理的结果,其形状为[batch, num_directions*hidden_size]。
  • 并不是所有模型都会使用最后一维的结果
  • 如果实例化LSTM的过程中,batch_first=False,则output[-1] or output[-1,:,:]可以获取最后一维
  • 如果实例化LSTM的过程中,batch_first=True,则output[:,-1,:]可以获取最后一维
  1. 如果结果是(seq_len, batch_size, num_directions * hidden_size),需要把它转化为(batch_size,seq_len, num_directions * hidden_size)的形状,不能够不是view等变形的方法,需要使用output.permute(1,0,2),即交换0和1轴,实现上述效果
  2. 使用双向LSTM的时候,往往会分别使用每个方向最后一次的output,作为当前数据经过双向LSTM的结果
  • 即:torch.cat([h_1[-2,:,:],h_1[-1,:,:]],dim=-1)
  • 最后的表示的size是[batch_size,hidden_size*2]
  1. 上述内容在GRU中同理


2. 使用LSTM完成文本情感分类


在前面,我们使用了word embedding去实现了toy级别的文本情感分类,那么现在我们在这个模型中添加上LSTM层,观察分类效果。


为了达到更好的效果,对之前的模型做如下修改


  1. MAX_LEN = 200
  2. 构建dataset的过程,把数据转化为2分类的问题,pos为1,neg为0,否则25000个样本完成10个类别的划分数据量是不够的
  3. 在实例化LSTM的时候,使用dropout=0.5,在model.eval()的过程中,dropout自动会为0


2.1 修改模型


class IMDBLstmmodel(nn.Module):
    def __init__(self):
        super(IMDBLstmmodel,self).__init__()
        self.hidden_size = 64
        self.embedding_dim = 200
        self.num_layer = 2
        self.bidriectional = True
        self.bi_num = 2 if self.bidriectional else 1
        self.dropout = 0.5
        #以上部分为超参数,可以自行修改
        self.embedding = nn.Embedding(len(ws),self.embedding_dim,padding_idx=ws.PAD) #[N,300]
        self.lstm = nn.LSTM(self.embedding_dim,self.hidden_size,self.num_layer,bidirectional=True,dropout=self.dropout)
        #使用两个全连接层,中间使用relu激活函数
        self.fc = nn.Linear(self.hidden_size*self.bi_num,20)
        self.fc2 = nn.Linear(20,2)
    def forward(self, x):
        x = self.embedding(x)
        x = x.permute(1,0,2) #进行轴交换
        h_0,c_0 = self.init_hidden_state(x.size(1))
        _,(h_n,c_n) = self.lstm(x,(h_0,c_0))
        #只要最后一个lstm单元处理的结果,这里多去的hidden state
        out = torch.cat([h_n[-2, :, :], h_n[-1, :, :]], dim=-1)
        out = self.fc(out)
        out = F.relu(out)
        out = self.fc2(out)
        return F.log_softmax(out,dim=-1)
    def init_hidden_state(self,batch_size):
        h_0 = torch.rand(self.num_layer * self.bi_num, batch_size, self.hidden_size).to(device)
        c_0 = torch.rand(self.num_layer * self.bi_num, batch_size, self.hidden_size).to(device)
        return h_0,c_0


2.2 完成训练和测试代码


为了提高程序的运行速度,可以考虑把模型放在gup上运行,那么此时需要处理一下几点:


  1. device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  2. model.to(device)
  3. 除了上述修改外,涉及计算的所有tensor都需要转化为CUDA的tensor
  4. 初始化的h_0,c_0
  5. 训练集和测试集的input,traget
  6. 在最后可以通过tensor.cpu()转化为torch的普通tensor


train_batch_size = 64
test_batch_size = 5000
# imdb_model = IMDBModel(MAX_LEN) #基础model
imdb_model = IMDBLstmmodel().to(device) #在gpu上运行,提高运行速度
# imdb_model.load_state_dict(torch.load("model/mnist_net.pkl"))
optimizer = optim.Adam(imdb_model.parameters())
criterion = nn.CrossEntropyLoss()
def train(epoch):
    mode = True
    imdb_model.train(mode)
    train_dataloader =get_dataloader(mode,train_batch_size)
    for idx,(target,input,input_lenght) in enumerate(train_dataloader):
        target = target.to(device)
        input = input.to(device)
        optimizer.zero_grad()
        output = imdb_model(input)
        loss = F.nll_loss(output,target) #traget需要是[0,9],不能是[1-10]
        loss.backward()
        optimizer.step()
        if idx %10 == 0:
            pred = torch.max(output, dim=-1, keepdim=False)[-1]
            acc = pred.eq(target.data).cpu().numpy().mean()*100.
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\t ACC: {:.6f}'.format(epoch, idx * len(input), len(train_dataloader.dataset),
                       100. * idx / len(train_dataloader), loss.item(),acc))
            torch.save(imdb_model.state_dict(), "model/mnist_net.pkl")
            torch.save(optimizer.state_dict(), 'model/mnist_optimizer.pkl')
 def test():
    mode = False
    imdb_model.eval()
    test_dataloader = get_dataloader(mode, test_batch_size)
    with torch.no_grad():
        for idx,(target, input, input_lenght) in enumerate(test_dataloader):
            target = target.to(device)
            input = input.to(device)
            output = imdb_model(input)
            test_loss  = F.nll_loss(output, target,reduction="mean")
            pred = torch.max(output,dim=-1,keepdim=False)[-1]
            correct = pred.eq(target.data).sum()
            acc = 100. * pred.eq(target.data).cpu().numpy().mean()
            print('idx: {} Test set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(idx,test_loss, correct, target.size(0),acc))
 if __name__ == "__main__":
    test()
    for i in range(10):
        train(i)
        test()


2.3 模型训练的最终输出


...
Train Epoch: 9 [20480/25000 (82%)]  Loss: 0.017165   ACC: 100.000000
Train Epoch: 9 [21120/25000 (84%)]  Loss: 0.021572   ACC: 98.437500
Train Epoch: 9 [21760/25000 (87%)]  Loss: 0.058546   ACC: 98.437500
Train Epoch: 9 [22400/25000 (90%)]  Loss: 0.045248   ACC: 98.437500
Train Epoch: 9 [23040/25000 (92%)]  Loss: 0.027622   ACC: 98.437500
Train Epoch: 9 [23680/25000 (95%)]  Loss: 0.097722   ACC: 95.312500
Train Epoch: 9 [24320/25000 (97%)]  Loss: 0.026713   ACC: 98.437500
Train Epoch: 9 [15600/25000 (100%)] Loss: 0.006082   ACC: 100.000000
idx: 0 Test set: Avg. loss: 0.8794, Accuracy: 4053/5000 (81.06%)
idx: 1 Test set: Avg. loss: 0.8791, Accuracy: 4018/5000 (80.36%)
idx: 2 Test set: Avg. loss: 0.8250, Accuracy: 4087/5000 (81.74%)
idx: 3 Test set: Avg. loss: 0.8380, Accuracy: 4074/5000 (81.48%)
idx: 4 Test set: Avg. loss: 0.8696, Accuracy: 4027/5000 (80.54%)


可以看到模型的测试准确率稳定在81%左右。


目录
相关文章
|
12天前
|
算法 前端开发 数据挖掘
【类脑智能】脑网络通信模型分类及量化指标(附思维导图)
本文概述了脑网络通信模型的分类、算法原理及量化指标,介绍了扩散过程、路由协议和参数模型三种通信模型,并详细讨论了它们的性能指标、优缺点以及在脑网络研究中的应用,同时提供了思维导图以帮助理解这些概念。
13 3
【类脑智能】脑网络通信模型分类及量化指标(附思维导图)
|
12天前
|
数据采集 搜索推荐 算法
基于B站视频评论的文本分析,采用包括文本聚类分析、LDA主题分析、网络语义分析
本文通过Python爬虫技术采集B站视频评论数据,利用LDA主题分析、聚类分析和语义网络分析等方法,对评论进行深入的文本分析,挖掘用户评论的主题、情感倾向和语义结构,旨在为商业决策提供支持,优化内容创作和用户满意度。
基于B站视频评论的文本分析,采用包括文本聚类分析、LDA主题分析、网络语义分析
|
12天前
|
数据采集 自然语言处理 监控
【优秀python毕设案例】基于python django的新媒体网络舆情数据爬取与分析
本文介绍了一个基于Python Django框架开发的新媒体网络舆情数据爬取与分析系统,该系统利用Scrapy框架抓取微博热搜数据,通过SnowNLP进行情感分析,jieba库进行中文分词处理,并以图表和词云图等形式进行数据可视化展示,以实现对微博热点话题的舆情监控和分析。
【优秀python毕设案例】基于python django的新媒体网络舆情数据爬取与分析
|
1天前
|
网络协议 Java
一文讲明TCP网络编程、Socket套接字的讲解使用、网络编程案例
这篇文章全面讲解了基于Socket的TCP网络编程,包括Socket基本概念、TCP编程步骤、客户端和服务端的通信过程,并通过具体代码示例展示了客户端与服务端之间的数据通信。同时,还提供了多个案例分析,如客户端发送信息给服务端、客户端发送文件给服务端以及服务端保存文件并返回确认信息给客户端的场景。
一文讲明TCP网络编程、Socket套接字的讲解使用、网络编程案例
|
4天前
|
网络协议 网络架构
【网络工程师配置篇】BGP联盟配置案例及分析(超级干货)
【网络工程师配置篇】BGP联盟配置案例及分析(超级干货)
|
4天前
|
网络协议 网络架构
【网络工程师配置篇】VRRP与BFD联动配置案例
【网络工程师配置篇】VRRP与BFD联动配置案例
|
7天前
|
机器学习/深度学习 PyTorch TensorFlow
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
30 1
|
12天前
|
机器学习/深度学习 数据可视化 数据挖掘
【Macos系统】安装VOSviewer及使用VOSviewer教程!!以ESN网络的研究进行案例分析
本文介绍了如何在MacOS系统上安装VOSviewer软件,并以ESN(Echo State Network)网络的研究为例,通过VOSviewer对相关科学文献进行可视化分析,以深入了解ESN在学术研究中的应用和发展情况。
25 0
【Macos系统】安装VOSviewer及使用VOSviewer教程!!以ESN网络的研究进行案例分析
|
19天前
|
移动开发 网络协议 算法
(十)Netty进阶篇:漫谈网络粘包、半包问题、解码器与长连接、心跳机制实战
在前面关于《Netty入门篇》的文章中,咱们已经初步对Netty这个著名的网络框架有了认知,本章的目的则是承接上文,再对Netty中的一些进阶知识进行阐述,毕竟前面的内容中,仅阐述了一些Netty的核心组件,想要真正掌握Netty框架,对于它我们应该具备更为全面的认知。
|
20天前
|
安全 物联网 区块链
云端防御:云计算时代的网络安全策略与实战《未来已来:探索区块链、物联网与虚拟现实的融合革新》
【7月更文挑战第31天】在数字化转型的浪潮中,云计算已成为推动企业增长的核心动力。然而,随着数据和应用逐渐迁移到云端,网络安全问题也愈发严峻。本文将探讨云计算环境中的安全挑战,并提出相应的防御策略。通过分析云服务模型、安全威胁及信息安全技术的应用,结合代码示例,本文旨在为读者提供一套实用的云端安全防护方案。
30 1

热门文章

最新文章