【Macos系统】安装VOSviewer及使用VOSviewer教程!!以ESN网络的研究进行案例分析

简介: 本文介绍了如何在MacOS系统上安装VOSviewer软件,并以ESN(Echo State Network)网络的研究为例,通过VOSviewer对相关科学文献进行可视化分析,以深入了解ESN在学术研究中的应用和发展情况。

【Macos系统】安装VOSviewer及使用VOSviewer教程 以ESN网络的研究进行案例分析

本文介绍如何安装和使用VOSviewer软件,并以ESN(Echo State Network)网络的研究为案例进行分析。利用VOSviewer对相关文献进行可视化分析,并深入了解ESN网络在学术研究中的应用和发展情况。

VOSviewer是一款用于可视化科学文献、词汇和其他类型数据的开放源代码软件,可以帮助用户发现数据中的模式,并更好地理解其内在结构。

1 安装java环境

https://www.java.com/zh-CN/download/

在这里插入图片描述

2 安装VOsviewer

下载安装包:https://www.vosviewer.com/download
在这里插入图片描述

运行即可打开

在这里插入图片描述

3 下载文献库

从学校的图书馆进入web of science 检索文献。
在这里插入图片描述
我的关键词是:Echo State network,检索到有542篇,选择Export导出文献。格式是”Tab Delimited file“

在这里插入图片描述
选择Records from ,Record Content选择”Full Record and Cited References“
在这里插入图片描述

4 导入VOSviewer可视化分析

在这里插入图片描述
在这里插入图片描述
根据自己的分析需求选择选项。

4.1 关键词分析

选择Co-occurence,进行关键词分析。由于有的论文关键词数量只有2-3个,就选择进一步选择最小关键词数量的文章,阈值越小,包含能分析的文章越多,我选择3。总共有500篇可分析的论文。
在这里插入图片描述### 4.1.1 network visualization分析

会默认打开network visualization,是聚类后的连接图,不同颜色代表不同的簇。
在这里插入图片描述
从分析图中可以分析得到,主要有四种颜色,代表目前Echo State Network(ESN)的研究方向主要分为4个。

(1)Echo State Network:强相关的关键词是reservoir computing、echo state network、esn、prediction、model、machines learning、algorithm、design、neural network、system、framework、genetic algorithm、regression、memory capacity。

通过询问GPT就可以得到结论,prompts

通过对论文的关键词聚类,聚类得到得到以下关键词,这些关键词根据权重的高低按照先后顺序排列,请说明这些论文在研究什么样的问题,用一句话来总结:

Echo State Network、reservoir computing、echo state network、esn、prediction、model、machines learning、algorithm、design、neural network、system、framework、genetic algorithm、regression、memory capacity。

根据这些关键词,分析得到这些论文是,在研究Echo State Network和reservoir computing(储层计算)的预测模型设计、机器学习算法应用、神经网络系统框架构建以及遗传算法在回归分析和记忆容量方面的应用等问题。

在这里插入图片描述
(2)United States:强相关的关键词是children、outcomes、project echo、health、primary care、access、management、impact、echo、rural、audlts、adolesecents、health、diagosis

这些论文研究问题主要关注美国儿童和青少年的健康诊断、管理和影响因素,重点是通过project echo来解决健康保健的可及性和农村地区的医疗问题。总之,该研究探讨了项目回声对美国儿童青少年健康诊断及管理中的影响与可及性在特定人群中的效果。
在这里插入图片描述

(3)social media:强相关的的关键词是echo chambers、communication、misinformation、disagreement、adolescents、addiction、Covid-19、vaccine hesitancy、fake news、social networking sites、russia、exposure

这些论文主要研究的问题是社交媒体对社会沟通、信息传播和意见分歧产生的影响,包括青少年在社交媒体上的成瘾行为以及COVID-19期间的虚假信息、疫苗犹豫、俄罗斯干预等相关议题。

在这里插入图片描述

(4)functional connectivity:强相关的关键词是brain、mri、fmri、human brain、brain networks、cortex、cognition、attention、activation、network、lesion、schizophrenia、connectivity、connectome、gray matter、working memory、reservoir computing、decision making、5-factor model、organization
这些论文主要研究的问题是大脑功能连接和网络,涉及脑皮层、认知、注意力、决策制定等方面,并在神经影像学、精神疾病如精神分裂症以及工作记忆等领域有所深入探讨。这个领域才是我的研究方向了。
在这里插入图片描述

4.1.2 overlay visualization

在图形的最上栏点击overlay visualization,就会显示另一种颜色的连接图。其中黄色代表的最新的研究。深蓝色代表的是最老的研究。

从图的分布中可以看到,目前的研究主要集中在右下角的簇。我的研究方向是类脑研究,应该是左下角的簇。可以看到这个研究开始的时间是比较久远的了,目前没有研究热度。可以和导师沟通,换一个研究子方向了。左上角的簇可以看到,目前还有些比较新的研究在做这一块,偏向于储层计算的应用。

在这里插入图片描述

4.1.3 Density visualization

(1)Item Density visualization

Item Density visualization的作用是通过颜色表示某一点周围项目的密度,帮助用户直观地理解该区域内项目的分布情况及其权重,从而分析数据中的聚集和稀疏情况。

Cluster Density visualization可视化用于显示每个聚类内项目的密度,根据颜色混合并考虑到给定区域内项目的数量及其权重,显示不同聚类内项目的分布。

在这里插入图片描述

Item Density visualization

在这里插入图片描述

Cluster Density visualization

可以看到研究的大方向是左上角的储层计算的应用和左下角的类脑研究。左下角的簇和其他的研究是比较独立的,说明以ESN去做类脑研究,是偏于理论,和工程实践没有太大的联系。

4.2 作者分析

重新create一个项目,选择Co-authorship
在这里插入图片描述

其中Network visualization结果如下,有6种颜色,主要分为6个簇。可以看到其中的sanjeev arora是大佬,将所有的研究连接起来了。其他的学者在不同的组织研究。
在这里插入图片描述

在谷歌学术上可以看到sanjeev 是普林斯顿大学计算机科学教授。

在这里插入图片描述

从Cluster density visualization可以看到每个的主要成员分别是

  • 红色簇:hawk,ernest t、fiol,veronica、de carvalho、icaro thiago、baker,ellen s
  • 紫色簇:arora,sanjeev、bradford,andrea、comerci,george、hernandez,jessica
  • 绿色簇:hawk,mary、basavaraju,vinay、chand,prabhat kumar、kumar,channaveerachari naveen、kumar,supriya
  • 蓝色簇:assad,nour、murillo,stephen、sood,akshay、kalishman,sunmers
  • 深黄色簇:hardesty,canyon、root-elledge,sandra、cooley hidecker,mary jo、kern,shira、mcgee,nancy
  • 天蓝色簇:katzman,joanna g、alchbli,amal、bhatt snehal r、katzman,william g

在这里插入图片描述## 4.3 引用量分析
在这里插入图片描述

在这里插入图片描述

可以看到有一些重要论文强相关:

  1. Lukoševičius, Mantas, and Herbert Jaeger. “Reservoir computing approaches to recurrent neural network training.” Computer science review 3.3 (2009): 127-149. 引用量2799
  2. Tanaka, Gouhei, et al. “Recent advances in physical reservoir computing: A review.” Neural Networks 115 (2019): 100-123. 引用量1297
  3. Lukoševičius, Mantas, Herbert Jaeger, and Benjamin Schrauwen. “Reservoir computing trends.” KI-Künstliche Intelligenz 26 (2012): 365-371. 应用量426
  4. Gonon, Lukas, and Juan-Pablo Ortega. “Reservoir computing universality with stochastic inputs.” IEEE transactions on neural networks and learning systems 31.1 (2019): 100-112. 引用量99
  5. Crone, Sven F., Michele Hibon, and Konstantinos Nikolopoulos. “Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction.” International Journal of forecasting 27.3 (2011): 635-660. 引用量365
  6. Ribeiro, Gabriel Trierweiler, et al. “Novel hybrid model based on echo state neural network applied to the prediction of stock price return volatility.” Expert Systems with Applications 184 (2021): 115490. 引用量57
  7. Wang, Jianzhou, Chunying Wu, and Tong Niu. “A novel system for wind speed forecasting based on multi-objective optimization and echo state network.” Sustainability 11.2 (2019): 526. 引用量36
  8. Qin, Lan, Weide Li, and Shijia Li. “Effective passenger flow forecasting using STL and ESN based on two improvement strategies.” Neurocomputing 356 (2019): 244-256. 应用量80
  9. Schwedersky, Bernardo Barancelli, Rodolfo César Costa Flesch, and Hiago Antonio Sirino Dangui. “Nonlinear MIMO system identification with echo-state networks.” Journal of Control, Automation and Electrical Systems 33.3 (2022): 743-754. 引用量9
  10. Wang, Tzai-Der, Xiaochuan Wu, and Colin Fyfe. “Factors important for good visualisation of time series.” International Journal of Computational Science and Engineering 12.1 (2016): 17-28. 引用量 5
  11. Georgopoulos, Spyros P., et al. “Reservoir computing vs. neural networks in financial forecasting.” International Journal of Computational Economics and Econometrics 13.1 (2023): 1-22. 引用量0
  12. Yang, Xiaojian, et al. “An improved deep echo state network inspired by tissue-like P system forecasting for non-stationary time series.” Journal of Membrane Computing 4.3 (2022): 222-231. 引用量3
  13. Tanaka, Gouhei, et al. “Reservoir computing with diverse timescales for prediction of multiscale dynamics.” Physical Review Research 4.3 (2022): L032014.引用量13
目录
相关文章
|
2月前
|
监控 算法 安全
基于 PHP 语言深度优先搜索算法的局域网网络监控软件研究
在当下数字化时代,局域网作为企业与机构内部信息交互的核心载体,其稳定性与安全性备受关注。局域网网络监控软件随之兴起,成为保障网络正常运转的关键工具。此类软件的高效运行依托于多种数据结构与算法,本文将聚焦深度优先搜索(DFS)算法,探究其在局域网网络监控软件中的应用,并借助 PHP 语言代码示例予以详细阐释。
55 1
|
24天前
|
Dart 开发工具 Android开发
在macOS系统上配置Flutter环境的步骤
在macOS系统上配置Flutter环境的步骤
222 62
|
22天前
|
运维 监控 安全
如何高效进行网络质量劣化分析与流量回溯分析?-AnaTraf
在数字化时代,网络质量分析与流量回溯对保障业务运行至关重要。网络拥塞、丢包等问题可能导致业务中断、安全隐患及成本上升。传统工具常缺乏细粒度数据,难以溯源问题。流量回溯分析可还原现场,助力精准排障。AnaTraf网络流量分析仪作为专业工具,能高效定位问题,提升团队响应力,降低运营风险。
如何高效进行网络质量劣化分析与流量回溯分析?-AnaTraf
|
19天前
|
大数据
“你朋友圈的真面目,大数据都知道!”——用社交网络分析看透人情世故
“你朋友圈的真面目,大数据都知道!”——用社交网络分析看透人情世故
62 16
|
19天前
|
Kubernetes 数据安全/隐私保护 容器
K8s中Flannel网络插件安装提示forbidden无权限的解决方法
总的来说,解决“forbidden无权限”的问题,需要从权限和配置两个方面来考虑。只有当用户或者服务账户有足够的权限,且Flannel的配置文件设置正确,才能成功地安装Flannel。希望这个解答能够帮助你解决问题。
54 13
|
2月前
|
存储 人工智能 编解码
Deepseek 3FS解读与源码分析(2):网络通信模块分析
2025年2月28日,DeepSeek 正式开源其颠覆性文件系统Fire-Flyer 3FS(以下简称3FS),重新定义了分布式存储的性能边界。本文基于DeepSeek发表的技术报告与开源代码,深度解析 3FS 网络通信模块的核心设计及其对AI基础设施的革新意义。
Deepseek 3FS解读与源码分析(2):网络通信模块分析
|
1月前
|
小程序 UED
拓展校友网络的创新解决方案:校园论坛圈子小程序+跑腿+二手市场系统
这是一款基于小程序的校园跑腿服务平台,支持多种注册登录方式、下单支付、跑腿接单配送、订单跟踪评价及物流查询功能,并配备客服模块提升用户体验。系统包含用户、客服、物流、跑腿员和订单五大核心模块,功能完善。此外,平台还拓展了校友网络功能,如信息咨询发布、校园社区建设和活动组织等,旨在增强校友互动与联系,形成紧密的校友生态。
71 4
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
173 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
2月前
|
前端开发 Java 关系型数据库
基于ssm的网络直播带货管理系统,附源码+数据库+论文
该项目为网络直播带货网站,包含管理员和用户两个角色。管理员可进行主页、个人中心、用户管理、商品分类与信息管理、系统及订单管理;用户可浏览主页、管理个人中心、收藏和订单。系统基于Java开发,采用B/S架构,前端使用Vue、JSP等技术,后端为SSM框架,数据库为MySQL。项目运行环境为Windows,支持JDK8、Tomcat8.5。提供演示视频和详细文档截图。
83 10
|
5月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
135 17