每日学术速递5.3

简介: 用任意语音音频生成说话人肖像是数字人和虚拟世界领域的一个关键问题。一种现代的说话人脸生成方法有望实现通用的音频-嘴唇同步、良好的视频质量和高系统效率的目标。

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理

Subjects: cs.CV


1.Learning Locally Editable Virtual Humans

8ad3d33565ba5971e6cb568b552fedcc.png

标题:学习本地可编辑虚拟人

作者:Hsuan-I Ho, Lixin Xue, Jie Song, Otmar Hilliges

文章链接:https://arxiv.org/abs/2305.00121

项目代码:https://custom-humans.github.io/

3c880b6ffcfc912975e763acf6153568.png

a3c5003faa44527f46839e08c734012d.png

322bb303e5ac9aa92162b689e37838a3.png

94db831d75dad425797816258388a6e3.png

摘要:

       在本文中,我们提出了一种新颖的混合表示和端到端可训练网络架构来对完全可编辑和可定制的神经化身进行建模。我们工作的核心在于将神经场的建模能力与蒙皮网格的易用性和固有 3D 一致性相结合的表示。为此,我们构建了一个可训练的特征码本来存储可变形身体模型顶点上的局部几何和纹理特征,从而利用其在关节下的一致拓扑结构。然后将这种表示用于生成式自动解码器架构,该架构允许适合看不见的扫描和对具有不同外观和几何形状的逼真化身进行采样。此外,我们的表示允许通过在 3D 资产之间交换局部特征来进行局部编辑。为了验证我们的头像创建和编辑方法,我们贡献了一个新的高质量数据集,称为 CustomHumans,用于训练和评估。我们的实验定量和定性地表明,与最先进的方法相比,我们的方法生成了多种详细的化身并实现了更好的模型拟合性能。我们的代码和数据集可在此 https URL 上获得。

2.It is all about where you start: Text-to-image generation with seed selection


971e42c6701a29540deb50d49af60cc3.png


标题:这一切都与您的起点有关:通过种子选择生成文本到图像

作者:Dvir Samuel, Rami Ben-Ari, Simon Raviv, Nir Darshan, Gal Chechik

文章链接:https://arxiv.org/abs/2304.14530

项目代码:https://github.com/microsoft/AdaM

b059974cc604def391d5920c6e89c258.png

8cb9c79aacd994c9910058af01a6eb53.png

d1c08fa5742ed14b1446ecb27914451d.png

36d6a3788eff470222b5e6365596f7d1.png

4e61d4af30882ab2925e53b3814238da.png


v摘要:

       文本到图像的扩散模型可以在新的构图和场景中综合各种概念。然而,他们仍然难以生成不常见的概念、罕见的不寻常组合或像手掌这样的结构化概念。它们的局限性部分是由于其训练数据的长尾性质:网络抓取的数据集非常不平衡,导致模型无法充分代表分布尾部的概念。在这里,我们描述了不平衡训练数据对文本到图像模型的影响,并提供了补救措施。我们表明,通过在噪声空间中仔细选择合适的生成种子,可以正确生成稀有概念,我们称之为 SeedSelect 的技术。SeedSelect 是高效的,不需要重新训练扩散模型。我们评估了 SeedSelect 在一系列问题上的优势。首先,在少样本语义数据增强中,我们为少样本和长尾基准生成语义正确的图像。我们展示了所有类别的分类改进,包括扩散模型训练数据的头部和尾部。我们进一步评估了 SeedSelect 在校正手部图像时的效果,这是当前扩散模型的一个众所周知的缺陷,并表明它显着改善了手部生成。

3.GeneFace++: Generalized and Stable Real-Time Audio-Driven 3D Talking Face Generation

34aae3c5a69d2bf2759d481871be33e6.png

标题:GeneFace++:通用且稳定的实时音频驱动 3D 说话人脸生成

作者:Zhenhui Ye, Jinzheng He, Ziyue Jiang, Rongjie Huang, Jiawei Huang, Jinglin Liu, Yi Ren, Xiang Yin, Zejun Ma, Zhou Zhao

文章链接:https://arxiv.org/abs/2305.00787

项目代码:https://genefaceplusplus.github.io/

网络异常,图片无法展示
|

7f31e6cf9d6786cc09229b409dd0740a.png

99fec37f60ea19efece078b923483f3b.png

10d44a261795c4507d974040c07533c2.png

摘要:

       用任意语音音频生成说话人肖像是数字人和虚拟世界领域的一个关键问题。一种现代的说话人脸生成方法有望实现通用的音频-嘴唇同步、良好的视频质量和高系统效率的目标。最近,神经辐射场(NeRF)成为该领域流行的渲染技术,因为它可以通过几分钟的训练视频实现高保真和 3D 一致的说话人脸生成。然而,基于 NeRF 的方法仍然存在一些挑战:1)对于口型同步,很难生成具有高时间一致性和音频口型精度的长面部运动序列;2)在视频质量方面,由于用于训练渲染器的数据有限,容易受到域外输入条件的影响,偶尔会产生糟糕的渲染结果;3) 至于系统效率,vanilla NeRF 缓慢的训练和推理速度严重阻碍了它在实际应用中的使用。在本文中,我们提出了 GeneFace++ 来应对这些挑战:1)利用音调轮廓作为辅助特征,并在面部运动预测过程中引入时间损失;2) 提出一种地标局部线性嵌入方法来调节预测运动序列中的异常值,以避免鲁棒性问题;3) 设计一个计算高效的基于 NeRF 的运动到视频渲染器,以实现快速训练和实时推理。通过这些设置,GeneFace++ 成为第一个基于 NeRF 的方法,可以通过广义的音频-嘴唇同步实现稳定和实时的说话人脸生成。大量实验表明,我们的方法在主观和客观评估方面优于最先进的基线。此 https URL 提供了视频示例。

目录
相关文章
|
机器学习/深度学习 自然语言处理 计算机视觉
每日学术速递3.21
随着神经辐射场 (NeRFs) 的引入,新颖的视图合成最近取得了巨大飞跃。NeRF 的核心是提出每个 3D 点都可以发出辐射,从而允许使用可区分的体积渲染进行视图合成。虽然神经辐射场可以准确地表示用于计算图像渲染的 3D 场景,但 3D 网格仍然是大多数计算机图形和模拟管道支持的主要场景表示,支持实时渲染和基于物理的模拟等任务。
128 0
|
机器学习/深度学习 运维 自然语言处理
每日学术速递3.3
评估面部图像的质量对于以足够的准确性操作面部识别系统至关重要。人脸质量标准化的最新进展 (ISO/IEC WD 29794-5) 建议使用组件质量测量方法将人脸质量分解为各个因素,从而为操作员重新捕获低质量图像提供有价值的反馈。
115 0
|
机器学习/深度学习 编解码 人工智能
每日学术速递4.28
神经辐射场 (NeRF) 在 3D 场景建模和合成高保真新颖视图方面取得了显著成功。然而,现有的基于 NeRF 的方法更侧重于充分利用图像分辨率来生成新颖的视图,而较少考虑在有限的输入分辨率下生成细节。类似于图像超分辨率的广泛使用
185 0
|
机器学习/深度学习 存储 自然语言处理
每日学术速递4.17
扩散模型已被证明在生成高质量图像方面非常有效。然而,使大型预训练扩散模型适应新领域仍然是一个开放的挑战,这对于实际应用至关重要。本文提出了 DiffFit,这是一种参数高效策略,用于微调大型预训练扩散模型,从而能够快速适应新领域。DiffFit 非常简单,仅微调特定层中的偏差项和新添加的缩放因子
133 0
|
机器学习/深度学习 自然语言处理 定位技术
每日学术速递4.2
传统上,视频理解任务由两个独立的架构建模,专门为两个不同的任务量身定制。基于序列的视频任务,如动作识别,使用视频主干直接提取时空特征,而基于帧的视频任务,如多目标跟踪 (MOT),依赖单个固定图像主干提取空间特征。相比之下,我们建议将视频理解任务统一到一种新颖的流式视频架构中,称为流式视觉转换器 (S-ViT)。 S-ViT 首先使用支持内存的时间感知空间编码器生成帧级特征,以服务于基于帧的视频任务。
144 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递3.13
现有的视频系统识别方法(估计物体的物理参数)假设已知物体的几何形状。这排除了它们在对象几何形状复杂或未知的绝大多数场景中的适用性。在这项工作中,我们的目标是从一组多视图视频中识别表征物理系统的参数,而无需对对象几何或拓扑进行任何假设。为此,我们提出了“物理增强连续体神经辐射场”(PAC-NeRF)
166 0
|
机器学习/深度学习 编解码 人工智能
每日学术速递5.5
我们介绍了多尺度多视图视觉变换器 (MMViT),它将多尺度特征图和多视图编码引入到变换器模型中。我们的模型对输入信号的不同视图进行编码,并构建多个通道分辨率特征阶段
155 0
|
机器学习/深度学习 存储 自然语言处理
每日学术速递4.9
错误信息已成为一个紧迫的问题。网络上广泛存在视觉和文本形式的虚假媒体。虽然已经提出了各种 deepfake 检测和文本假新闻检测方法,但它们仅设计用于基于二进制分类的单模态伪造,更不用说分析和推理跨不同模态的细微伪造痕迹。
123 0
|
机器学习/深度学习 存储 编解码
每日学术速递2.20
将强大的生成去噪扩散模型 (DDM) 应用于图像语义编辑等下游任务通常需要微调预训练 DDM 或学习辅助编辑网络。在这项工作中,我们通过仅通过冻结 DDM 优化去噪轨迹,在各种应用程序设置上实现了 SOTA 语义控制性能。
98 0
|
机器学习/深度学习 自然语言处理 数据可视化
每日学术速递3.31
我们提出了 LLaMA-Adapter,这是一种轻量级自适应方法,可以有效地将 LLaMA 微调为指令跟随模型。使用 52K 自我指导演示,LLaMA-Adapter 仅在冻结的 LLaMA 7B 模型上引入 1.2M 可学习参数,并且在 8 个 A100 GPU 上进行微调的成本不到一小时。
166 0