CVPR‘2023 即插即用系列! | BiFormer: 通过双向路由注意力构建高效金字塔网络架构

简介: CVPR‘2023 即插即用系列! | BiFormer: 通过双向路由注意力构建高效金字塔网络架构

640.png


Title: BiFormer: Vision Transformer with Bi-Level Routing Attention

Paper: https://arxiv.org/pdf/2303.08810.pdf

Code:  https://github.com/rayleizhu/BiFormer

导读

众所周知,Transformer相比于CNNs的一大核心优势便是借助自注意力机制的优势捕捉长距离上下文依赖。正所谓物极必反,在原始的 Transformer 架构设计中,这种结构虽然在一定程度上带来了性能上的提升,但却会引起两个老生常态的问题:

  1. 内存占用大
  2. 计算代价高

因此,有许多研究也在致力于做一些这方面的优化工作,包括但不仅限于将注意力操作限制在:

  • inside local windows, e.g., Swin transformer and Crossformer;
  • axial stripes, e.g., Cswin transformer;
  • dilated windows, e.g., Maxvit and Crossformer;

Figure 1. Vanilla attention and its sparse variants.

让我们先简单的看下上图:其中图(a)是原始的注意力实现,其直接在全局范围内操作,导致高计算复杂性和大量内存占用;而对于图(b)-(d),这些方法通过引入具有不同手工模式的稀疏注意力来减轻复杂性,例如局部窗口、轴向条纹和扩张窗口等;而图(e)则是基于可变形注意力通过不规则网格来实现图像自适应稀疏性;

总的来说,作者认为以上这些方法大都是通过将 手工制作与内容无关 的稀疏性引入到注意力机制来试图缓解这个问题。因此,本文通过双层路由(bi-level routing)提出了一种新颖的动态稀疏注意力(dynamic sparse attention ),以实现更灵活的计算分配内容感知,使其具备动态的查询感知稀疏性,如图(f)所示。

此外,基于该基础模块,本文构建了一个名为BiFormer的新型通用视觉网络架构。由于 BiFormer 以查询自适应的方式关注一小部分相关标记,而不会分散其他不相关标记的注意力,因此它具有良好的性能和高计算效率。最后,通过在图像分类、目标检测和语义分割等多项计算机视觉任务的实证结果充分验证了所提方法的有效性。

方法

Bi-Level Routing Attention

为了缓解多头自注意力(Multi-Head Self-Attention, MHSA)的可扩展性问题,先前的一些方法提出了不同的稀疏注意力机制,其中每个查询只关注少量的键值对,而非全部。然而,这些方法有两个共性问题:

  1. 要么使用手工制作的静态模式(无法自适应);
  2. 要么在所有查询中共享键值对的采样子集(无法做到互不干扰);

为此,作者探索了一种动态的、查询感知的稀疏注意力机制,其关键思想是在粗糙区域级别过滤掉大部分不相关的键值对,以便只保留一小部分路由区域(这不就把冗余的信息干掉了吗老铁们)。其次,作者在这些路由区域的联合中应用细粒度的token-to-token注意力。

整个算法的伪代码流程如下所示:

可以看到,整个模块主要包含三个组件,即:

  • Region partition and input projection
  • Region-to-region routing with directed graph
  • Token-to-token attention

简单梳理下。假设我们输入一张特征图,通过线性映射获得QKV;其次,我们通过领接矩阵构建有向图找到不同键值对对应的参与关系,可以理解为每个给定区域应该参与的区域;最后,有了区域到区域路由索引矩阵 ,我们便可以应用细粒度的token-to-token注意力了。

具体的实现还是有些复杂,可以参考代码慢慢理解,笔者这里看的也是云里雾里的。

Bi-Level Routing Attention

上面是 BRA 模块的示意图。从图中可以看出,该方法是通过收集前 k 个相关窗口中的键值对,并利用稀疏性操作直接跳过最不相关区域的计算来节省参数量和计算量。值得一提的是,以上操作涉及 GPU 友好的密集矩阵乘法,利于服务器端做推理加速。

BiFormer

基于BRA模块,本文构建了一种新颖的通用视觉转换器BiFormer。如上图所示,其遵循大多数的vision transformer架构设计,也是采用四级金字塔结构,即下采样32倍。

具体来说,BiFormer在第一阶段使用重叠块嵌入,在第二到第四阶段使用块合并模块来降低输入空间分辨率,同时增加通道数,然后是采用连续的BiFormer块做特征变换。需要注意的是,在每个块的开始均是使用  的深度卷积来隐式编码相对位置信息。随后依次应用BRA模块和扩展率为  的 2 层 多层感知机(Multi-Layer Perceptron, MLP)模块,分别用于交叉位置关系建模和每个位置嵌入。

上表展示了不同模型变体的网络宽度和深度。其中FLOP是基于  输入计算的。

实验

Table 2. Comparison of different backbones on ImageNet-1K.

所有模型都在分辨率为  的图像上进行训练和评估。其中星号表示该模型是使用标记标签进行训练的。据笔者所知,这是在没有额外训练数据或训练技巧所能取得的最佳结果。此外,使用基于标记的蒸馏技术,BiFormer-S的准确率可以进一步提高到 !

可以看到,本文方法貌似对小目标检测效果比较好。这可能是因为BRA模块是基于稀疏采样而不是下采样,一来可以保留细粒度的细节信息,二来同样可以达到节省计算量的目的。

为了进一步了解双层路由注意力的工作原理,作者将路由区域和注意力响应进行可视化。从图中我们可以清楚地观察到语义相关区域已被成功定位。例如,在第一个场景中的街景所示,如果查询位置在建筑物或树上,则对应的路由区域覆盖相同或相似的实体。而在第二个室内场景中,当我们将查询位置放在鼠标上时,路由区域包含主机、键盘和显示器的一部分,即使这些区域彼此不相邻。这意味着双层路由注意力可以捕获远距离对上下文依赖。

总结

本文提出了一种双层路由注意力模块,以动态、查询感知的方式实现计算的有效分配。其中,BRA模块的核心思想是在粗区域级别过滤掉最不相关的键值对。它是通过首先构建和修剪区域级有向图,然后在路由区域的联合中应用细粒度的token-to-token注意力来实现的。值得一提的是,该模块的计算复杂度可压缩至 !最后,基于该模块本文构建了一个金字塔结构的视觉Transformer——BiFormer,它在四种流行的视觉任务、图像分类、目标检测、实例分割和语义分割方面均表现出卓越的性能。

目录
相关文章
|
10天前
|
运维 Kubernetes Docker
利用Docker和Kubernetes构建微服务架构
利用Docker和Kubernetes构建微服务架构
|
16天前
|
运维 持续交付 API
从零构建微服务架构:一次深度技术探索之旅####
【10月更文挑战第28天】 本文记录了作者在从零开始构建微服务架构过程中的深刻技术感悟,通过实战案例详细剖析了微服务设计、开发、部署及运维中的关键要点与挑战。文章首先概述了微服务架构的核心理念及其对企业IT架构转型的重要性,随后深入探讨了服务拆分策略、API网关选型、服务间通信协议选择、容器化部署(Docker+Kubernetes)、以及持续集成/持续部署(CI/CD)流程的设计与优化。最后,分享了在高并发场景下的性能调优经验与故障排查心得,旨在为读者提供一套可借鉴的微服务架构实施路径。 ####
54 3
|
8天前
|
SQL 安全 前端开发
PHP与现代Web开发:构建高效的网络应用
【10月更文挑战第37天】在数字化时代,PHP作为一门强大的服务器端脚本语言,持续影响着Web开发的面貌。本文将深入探讨PHP在现代Web开发中的角色,包括其核心优势、面临的挑战以及如何利用PHP构建高效、安全的网络应用。通过具体代码示例和最佳实践的分享,旨在为开发者提供实用指南,帮助他们在不断变化的技术环境中保持竞争力。
|
6天前
|
传感器 算法 物联网
智能停车解决方案之停车场室内导航系统(二):核心技术与系统架构构建
随着城市化进程的加速,停车难问题日益凸显。本文深入剖析智能停车系统的关键技术,包括停车场电子地图编辑绘制、物联网与传感器技术、大数据与云计算的应用、定位技术及车辆导航路径规划,为读者提供全面的技术解决方案。系统架构分为应用层、业务层、数据层和运行环境,涵盖停车场室内导航、车位占用检测、动态更新、精准导航和路径规划等方面。
34 4
|
25天前
|
Kubernetes 负载均衡 Docker
构建高效后端服务:微服务架构的探索与实践
【10月更文挑战第20天】 在数字化时代,后端服务的构建对于任何在线业务的成功至关重要。本文将深入探讨微服务架构的概念、优势以及如何在实际项目中有效实施。我们将从微服务的基本理念出发,逐步解析其在提高系统可维护性、扩展性和敏捷性方面的作用。通过实际案例分析,揭示微服务架构在不同场景下的应用策略和最佳实践。无论你是后端开发新手还是经验丰富的工程师,本文都将为你提供宝贵的见解和实用的指导。
|
26天前
|
运维 供应链 安全
SD-WAN分布式组网:构建高效、灵活的企业网络架构
本文介绍了SD-WAN(软件定义广域网)在企业分布式组网中的应用,强调其智能化流量管理、简化的网络部署、弹性扩展能力和增强的安全性等核心优势,以及在跨国企业、多云环境、零售连锁和制造业中的典型应用场景。通过合理设计网络架构、选择合适的网络连接类型、优化应用流量优先级和定期评估网络性能等最佳实践,SD-WAN助力企业实现高效、稳定的业务连接,加速数字化转型。
SD-WAN分布式组网:构建高效、灵活的企业网络架构
|
12天前
|
监控 安全 网络安全
企业网络安全:构建高效的信息安全管理体系
企业网络安全:构建高效的信息安全管理体系
41 5
|
11天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
33 3
|
15天前
|
监控 前端开发 JavaScript
探索微前端架构:构建可扩展的现代Web应用
【10月更文挑战第29天】本文探讨了微前端架构的核心概念、优势及实施策略,通过将大型前端应用拆分为多个独立的微应用,提高开发效率、增强可维护性,并支持灵活的技术选型。实际案例包括Spotify和Zalando的成功应用。
|
24天前
|
监控 API 持续交付
构建高效后端服务:微服务架构的深度探索
【10月更文挑战第20天】 在数字化时代,后端服务的构建对于支撑复杂的业务逻辑和海量数据处理至关重要。本文深入探讨了微服务架构的核心理念、实施策略以及面临的挑战,旨在为开发者提供一套构建高效、可扩展后端服务的方法论。通过案例分析,揭示微服务如何帮助企业应对快速变化的业务需求,同时保持系统的稳定性和灵活性。
46 9