新智元报道
编辑:LRS
【新智元导读】性能不再是瓶颈,模型运行效率是问题的关键!
虽然谷歌的Bard翻车了,但谷歌的AI实力仍然不容小觑。
自开年以来,由Jeff Dean领衔的Google Research年终总结系列「Google Research, 2022 & beyond」一直在持续更新,最近也是更新到了第四期。
本期以「提升模型效率」为主题,一起看看谷歌工程师们都想出了哪些ideas!
往期回顾:1. 超详超硬Jeff Dean万字总结火热出炉!图解谷歌2022年AIGC、LLM、CV三大领域成就2. 谷歌2022年度回顾:让AI更负责任,主要做了4点微小的工作3. Jeff Dean发推:谷歌超硬年终总结「第三弹」来了!大力发展Jax
运行效率成关键
在过去十年里,深度学习呈现爆炸式发展,很大程度上是由于新算法和体系结构的融合、数据量的显著增加以及计算能力的提高。
相比十年前,人工智能和机器学习模型变得更加巨大、更复杂,具有更深且更复杂的网络结构、更多的参数、训练时用到了更多的数据,共同促进了机器学习历史上一些最具变革性的成果。
随着这些模型越来越多地部署在生产和业务应用程序中,模型的推理效率和运行成本已经从一个次要因素变成了一个主要的限制因素。
Google在这方面的应对措施就是继续在机器学习效率方面投入巨资,主要解决以下四个难题:
1、高效的模型架构(Efficient Architecture)2、数据效率(Data Efficiency)3、训练效率(Training Efficiency)4、推理效率(Inference Efficiency)
除了效率之外,模型还面临着围绕真实性、安全性、隐私性和时效性(freshness)等诸多难题。
这篇文章将重点介绍一系列Google Research研究公司为应对上述挑战而开发的新算法。