【Pytorch神经网络实战案例】27 MaskR-CNN内置模型实现语义分割

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 在torchvision库下的models\segmentation目录中,找到segmentation.Py文件。该文件中存放着PyTorch内置的语义分割模型。

103b746101d146cd93357daedb91d512.png


1 PyTorch中语义分割的内置模型


在torchvision库下的models\segmentation目录中,找到segmentation.Py文件。该文件中存放着PyTorch内置的语义分割模型。


2 MaskR-CNN内置模型实现语义分割


2.1 代码逻辑简述


将COCO 2017数据集上的预训练模型dceplabv3_resnet101_coco加载到内存,并使用该模型对图片进行语义分割。


2.2 代码实现:MaskR-CNN内置模型实现语义分割


Maskrcnn_resent_Semantic_Segmentation.py


import torch
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
from torchvision import models
from torchvision import  transforms
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
# 获取模型,如果本地没有缓存,则下载
model = models.segmentation.deeplabv3_resnet101(pretrained=True) # 调用内置模型,并使用预训练权重进行初始化。
model.eval() # 不然报错 Expected more than 1 value per channel when training, got input size torch.Size
# 在图片的数据输入网络之前,对图片进行预处理
transform = transforms.Compose([
    transforms.Resize(256), # 将图片尺寸调整为256×256
    transforms.CenterCrop(224), # 中心裁剪成224×224
    transforms.ToTensor(), # 转换成张量归一化到[0,1]
    transforms.Normalize( # 使用均值,方差标准化
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]
    )
])
def preimg(img): # 定义图片预处理函数
    if img.mode == 'RGBA':  # 兼容RGBA图片
        ch = 4
        print('ch', ch)
        a = np.asarray(img)[:, :, :3]
        img = Image.fromarray(a)
    return img
# 加载要预测的图片
img = Image.open('./models_2/mask.jpg') # 将图片输入模型,进行预测。
# 模型预测的输出是一个OrderedDict结构。deeplabv3_resnet101模型的图片输入尺寸是[224,224],输出形状是[1,21,224,224],代表20+1(背景)个类别。
plt.imshow(img)
plt.axis('off')
plt.show() # 显示加载图片
im = preimg(img)
# 对输入数据进行维度扩展,成为NCHW
inputimg = transform(im).unsqueeze(0)
# 显示用transform转化后的图片
tt = np.transpose(inputimg.detach().numpy()[0],(1,2,0))
plt.imshow(tt.astype('uint8')) # 不然报错:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers)
plt.show()
output = model(inputimg) # 将图片输入模型
print("输出结果的形状:",output['out'].shape)
# 去掉批次维度,提取结果。使用argmax函数在每个像素点的21个分类中选出概率值最大的索引,为预测结果。
output = torch.argmax(output['out'].squeeze(), dim=0).detach().cpu().numpy()
resultclass = set(list(output.flat))
print("所发现的分类:",resultclass)
# 所发现的分类.{0,13,15}
# 模型从图中识别出了两个类别的内容。索引值13和15分别对应分类名称“马”和“人”。
def decode_segmap(image,nc=21): # 对图片中的每个像素点根据其所属类别进行染色。不同的类别显示不同的颜色。
    label_colors = np.array([(0, 0, 0),  # 定义每个分类对应的颜色
                             (128, 0, 0), (0, 128, 0), (128, 128, 0), (0, 0, 128), (128, 0, 128),
                             (0, 128, 128), (128, 128, 128), (64, 0, 0), (192, 0, 0), (64, 128, 0),
                             (192, 128, 0), (64, 0, 128), (192, 0, 128), (64, 128, 128), (192, 128, 128),
                             (0, 64, 0), (128, 64, 0), (0, 192, 0), (128, 192, 0), (0, 64, 128)])
    r = np.zeros_like(image).astype(np.uint8)  # 初始化RGB
    g = np.zeros_like(image).astype(np.uint8)
    b = np.zeros_like(image).astype(np.uint8)
    for l in range(0, nc):  # 根据预测结果进行染色
        idx = image == l
        print("idx:",idx)
        r[idx] = label_colors[l, 0]
        g[idx] = label_colors[l, 1]
        b[idx] = label_colors[l, 2]
    return np.stack([r, g, b], axis=2)  # 返回结果
rgb = decode_segmap(output)
img = Image.fromarray(rgb)
plt.axis('off') # 显示模型的可视化结果
print("快完了")
plt.imshow(img)
plt.show()


06460ac1c6cd4393a63e864a562ff0c5.png

目录
相关文章
|
4月前
|
C++
基于Reactor模型的高性能网络库之地址篇
这段代码定义了一个 InetAddress 类,是 C++ 网络编程中用于封装 IPv4 地址和端口的常见做法。该类的主要作用是方便地表示和操作一个网络地址(IP + 端口)
271 58
|
4月前
|
网络协议 算法 Java
基于Reactor模型的高性能网络库之Tcpserver组件-上层调度器
TcpServer 是一个用于管理 TCP 连接的类,包含成员变量如事件循环(EventLoop)、连接池(ConnectionMap)和回调函数等。其主要功能包括监听新连接、设置线程池、启动服务器及处理连接事件。通过 Acceptor 接收新连接,并使用轮询算法将连接分配给子事件循环(subloop)进行读写操作。调用链从 start() 开始,经由线程池启动和 Acceptor 监听,最终由 TcpConnection 管理具体连接的事件处理。
153 2
|
4月前
基于Reactor模型的高性能网络库之Tcpconnection组件
TcpConnection 由 subLoop 管理 connfd,负责处理具体连接。它封装了连接套接字,通过 Channel 监听可读、可写、关闭、错误等
151 1
|
4月前
|
JSON 监控 网络协议
干货分享“对接的 API 总是不稳定,网络分层模型” 看电商 API 故障的本质
本文从 OSI 七层网络模型出发,深入剖析电商 API 不稳定的根本原因,涵盖物理层到应用层的典型故障与解决方案,结合阿里、京东等大厂架构,详解如何构建高稳定性的电商 API 通信体系。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
2月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
179 2
|
2月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
4月前
基于Reactor模型的高性能网络库之Poller(EpollPoller)组件
封装底层 I/O 多路复用机制(如 epoll)的抽象类 Poller,提供统一接口支持多种实现。Poller 是一个抽象基类,定义了 Channel 管理、事件收集等核心功能,并与 EventLoop 绑定。其子类 EPollPoller 实现了基于 epoll 的具体操作,包括事件等待、Channel 更新和删除等。通过工厂方法可创建默认的 Poller 实例,实现多态调用。
278 60
|
4月前
基于Reactor模型的高性能网络库之Channel组件篇
Channel 是事件通道,它绑定某个文件描述符 fd,注册感兴趣的事件(如读/写),并在事件发生时分发给对应的回调函数。
233 60
|
4月前
|
安全 调度
基于Reactor模型的高性能网络库之核心调度器:EventLoop组件
它负责:监听事件(如 I/O 可读写、定时器)、分发事件、执行回调、管理事件源 Channel 等。
279 57

热门文章

最新文章

推荐镜像

更多