【Pytorch神经网络理论篇】 15 过拟合问题的优化技巧(二):Dropout()方法

简介: 异常数据的特点:与主流样本中的规律不同,在一个样本中出现的概率要比主流数据出现的概率低很多。在每次训练中,忽略模型中一些节点,将小概率的异常数据获得学习的机会变得更低。这样,异常数据对模型的影响就会更小。

学你好!本文章于2021年末编写,获得广泛的好评!


故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现,


Pytorch深度学习·理论篇(2023版)目录地址为:


CSDN独家 | 全网首发 | Pytorch深度学习·理论篇(2023版)目录


本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理进行讲解与分析,通过将深度学习知识与Pytorch的高效结合,帮助各位新入门的读者理解深度学习各个模板之间的关系,这些均是在Pytorch上实现的,可以有效的结合当前各位研究生的研究方向,设计人工智能的各个领域,是经过一年时间打磨的精品专栏!

https://v9999.blog.csdn.net/article/details/127587345


欢迎大家订阅(2023版)理论篇

以下为2021版原文~~~~


d2ae5e198a2d45428a186cb393d70896.png


1 Dropout方法


20180619185225799.png


2.1 Dropout原理


在训练过程中,每次随机选择一部分节点不去进行学习。


2.1.1 从Dropout原理来看过拟合的原因


任何一个模型不能完全把数据分开,在某一类中一定会有一些异常数据,过拟合的问题恰恰是把这些异常数据当成规律来学习了。


2.1.2 异常数据的特点


异常数据的特点:与主流样本中的规律不同,在一个样本中出现的概率要比主流数据出现的概率低很多。在每次训练中,忽略模型中一些节点,将小概率的异常数据获得学习的机会变得更低。这样,异常数据对模型的影响就会更小。


2.1.3 Dropout的缺陷


Dropout会使一部分节点不去学习,所以在增加模型的泛化能力的同时,会使学习速度隆低。这注意样会使模型不太容易学成,于是在使用的过程中需要令理地进行调节,也就是确定到底丢弃多少节点。注意,并不是丢弃的节点越多越好。


2.2 Dropout的实现


2.2.1 Dropout的实现


  • Dropout:对一维的线性数据进行Dropout处理,输入形状是[N,D](N代表次数D代表数据数)。


  • Dropout2D:对二维的平面数据进行Dropout处理,输入形状是[N,C,H,W]和(N代表批次数,C代表通道数,H代表高度,W代表宽度),系统将对整个通道随机设为0。


  • Dropout3D:对三维的立体数据进行Dropout处理,输入形状是[N,C,D,H,W](N代表批次数,C代表通道数,D代表深度,H代表高度,W代表宽度),系统将对整个通道随机设为0。


2.2.2 Dropout函数定义(基于函数形式)


torch.nn.functional.dropout(input,p=0.5,training=False,inplace=False)


  • input:代表输入的模型节点。


  • p:表示丢弃率。如果参数值为1,那么表示全部丢弃(置0)。该参数默认值是0.5,表示丢弃50%的节点。


  • training:表示该函数当前的使用状态。如果参数值是False,那么表明不在训练状态使用,这时将不丢弃任何节点。


  • inplace:表示是否改变输入值,默认是False。


2.2.3 Dropout函数使用的注意事项


  • Dropout改变了神经网络的网络结构,它仅仅是属于训练时的方法。


  • 进行测试时,一般要将函效Dropout的trainimg参数变为False,表示不需要进行丢弃。否则会影响模型的型常输出。


  • 在使用类的方式调用Dropout时,没有training参数,因为Dropout实例化对象会根据模型本身的调用方式来自动调节training参数。

2.3 通过Dropout改善模型的过拟合状况


2.3.1 修改上篇文章中的# 2 搭建网络模型部分


# 2 搭建网络模型
# model = LogicNet(inputdim=2,hiddendim=500,outputdim=2) # 实例化模型,增加拟合能力将hiddendim赋值为500
# 替换为
class Logic_Dropout_Net(LogicNet):
    def __init__(self,inputdim,hiddendim,outputdim):
        super(Logic_Dropout_Net, self).__init__(inputdim,hiddendim,outputdim)
        # 方法2:使用类的方法实现步骤1
        #self.dropout = nn.Dropout(p=0.07)
    def forward(self,x):
        x = self.Linear1(x)
        x = torch.tanh(x)
        # 方法1 使用函数的方式实现
        x = nn.functional.dropout(x,p=0.01,training=self.training)
        # 方法2:使用类的方法实现步骤2
        # x = self.dropout(x)
        x = self.Linear2(x)
        return x
model = Logic_Dropout_Net(inputdim=2,hiddendim=500,outputdim=2) # 初始化模型


2.3.2 Dropout方法---代码总览


Dropout01.py


import sklearn.datasets
import torch
import numpy as np
import  matplotlib.pyplot as plt
from torch import nn
from LogicNet_fun import LogicNet,moving_average,predict,plot_decision_boundary
# 1 构建数据集
np.random.seed(0) # 设置随机数种子
X , Y =sklearn.datasets.make_moons(40,noise=0.2) # 生成两组半圆形数据
arg = np.squeeze(np.argwhere(Y==0),axis=1) # 获取第1组数据索引
arg2 = np.squeeze(np.argwhere(Y==1),axis=1) # 获取第2组数据索引
# 显示数据
plt.title("train moons data")
plt.scatter(X[arg,0],X[arg,1],s=100,c='b',marker='+',label = 'data1')
plt.scatter(X[arg2,0],X[arg2,1],s=40,c='r',marker='o',label = 'data2')
plt.legend()
plt.show()
# 2 搭建网络模型
# model = LogicNet(inputdim=2,hiddendim=500,outputdim=2) # 实例化模型,增加拟合能力将hiddendim赋值为500
# 替换为
class Logic_Dropout_Net(LogicNet):
    def __init__(self,inputdim,hiddendim,outputdim):
        super(Logic_Dropout_Net, self).__init__(inputdim,hiddendim,outputdim)
        # 方法2:使用类的方法实现步骤1
        #self.dropout = nn.Dropout(p=0.07)
    def forward(self,x):
        x = self.Linear1(x)
        x = torch.tanh(x)
        # 方法1 使用函数的方式实现
        x = nn.functional.dropout(x,p=0.01,training=self.training)
        # 方法2:使用类的方法实现步骤2
        # x = self.dropout(x)
        x = self.Linear2(x)
        return x
model = Logic_Dropout_Net(inputdim=2,hiddendim=500,outputdim=2) # 初始化模型
optimizer = torch.optim.Adam(model.parameters(),lr=0.01) # 定义优化器:反向传播过程中使用。
# 3 训练模型+训练过程loss可视化
xt = torch.from_numpy(X).type(torch.FloatTensor) # 将numpy数据转化为张量
yt = torch.from_numpy(Y).type(torch.LongTensor) # 将numpy数据转化为张量
epochs = 1000 # 定义迭代次数
losses = [] # 损失值列表
for i in range(epochs):
    loss = model.getloss(xt,yt)
    losses.append(loss.item()) # 保存损失值中间状态
    optimizer.zero_grad() # 清空梯度
    loss.backward() # 反向传播损失值
    optimizer.step() # 更新参数
avgloss = moving_average(losses) # 获得损失值的移动平均值
plt.figure(1)
plt.subplot(211)
plt.xlabel('step number')
plt.ylabel('Training loss')
plt.title('step number vs Training loss')
plt.show()
# 4 模型结果可视化,观察过拟合现象
plot_decision_boundary(lambda x: predict(model,x),X,Y)
from sklearn.metrics import accuracy_score
print("训练时的准确率",accuracy_score(model.predict(xt),yt))
# 重新生成两组半圆数据
Xtest,Ytest = sklearn.datasets.make_moons(80,noise=0.2)
plot_decision_boundary(lambda x: predict(model,x),Xtest,Ytest)
Xtest_t = torch.from_numpy(Xtest).type(torch.FloatTensor) # 将numpy数据转化为张量
Ytest_t = torch.from_numpy(Ytest).type(torch.LongTensor)
print("测试时准确率",accuracy_score(model.predict(Xtest_t),Ytest_t))


LogicNet_fun.py


import torch.nn as nn #引入torch网络模型库
import torch
import numpy as np
import matplotlib.pyplot as plt
# 1.2 定义网络模型
class LogicNet(nn.Module): #继承nn.Module类,构建网络模型
    def __init__(self,inputdim,hiddendim,outputdim): #初始化网络结构 ===》即初始化接口部分
        super(LogicNet,self).__init__()
        self.Linear1 = nn.Linear(inputdim,hiddendim) #定义全连接层
        self.Linear2 = nn.Linear(hiddendim,outputdim) #定义全连接层
        self.criterion = nn.CrossEntropyLoss() #定义交叉熵函数
    def forward(self,x):# 搭建用两个全连接层组成的网络模型 ===》 即正向接口部分:将网络层模型结构按照正向传播的顺序搭建
        x = self.Linear1(x)# 将输入传入第一个全连接层
        x = torch.tanh(x)# 将第一个全连接层的结果进行非线性变化
        x = self.Linear2(x)# 将网络数据传入第二个全连接层
        return x
    def predict(self,x):# 实现LogicNet类的预测窗口 ===》 即预测接口部分:利用搭建好的正向接口,得到模型预测结果
        #调用自身网络模型,并对结果进行softmax()处理,分别的出预测数据属于每一个类的概率
        pred = torch.softmax(self.forward(x),dim=1)# 将正向结果进行softmax(),分别的出预测结果属于每一个类的概率
        return torch.argmax(pred,dim=1)# 返回每组预测概率中最大的索引
    def getloss(self,x,y):# 实现LogicNet类的损失值接口 ===》 即损失值计算接口部分:计算模型的预测结果与真实值之间的误差,在反向传播时使用
        y_pred = self.forward(x)
        loss = self.criterion(y_pred,y)# 计算损失值的交叉熵
        return loss
# 1.5 训练可视化
def moving_average(a,w=10): #计算移动平均损失值
    if len(a) < w:
        return a[:]
    return [val if idx < w else sum(a[(idx - w):idx]) / w for idx, val in enumerate(a)]
def moving_average_to_simp(a,w=10): #
    if len(a) < w:
        return a[:]
    val_list = []
    for idx, val in enumerate(a):
        if idx < w:# 如果列表 a 的下标小于 w, 直接将元素添加进 xxx 列表
            val_list.append(val)
        else:#  向前取 10 个元素计算平均值, 添加到 xxx 列表
            val_list.append(sum(a[(idx - w):idx]) / w)
def plot_losses(losses):
    avgloss = moving_average(losses)#获得损失值的移动平均值
    plt.figure(1)
    plt.subplot(211)
    plt.plot(range(len(avgloss)),avgloss,'b--')
    plt.xlabel('step number')
    plt.ylabel('Training loss')
    plt.title('step number vs Training loss')
    plt.show()
# 1.7 数据可视化模型
def predict(model,x): #封装支持Numpy的预测接口
    x = torch.from_numpy(x).type(torch.FloatTensor)
    model = LogicNet(inputdim=2, hiddendim=3, outputdim=2)
    ans = model.predict(x)
    return ans.numpy()
def plot_decision_boundary(pred_func,X,Y): #在直角模型中实现预测结果的可视化
    #计算范围
    x_min ,x_max = X[:,0].min()-0.5 , X[:,0].max()+0.5
    y_min ,y_max = X[:,1].min()-0.5 , X[:,1].max()+0.5
    h=0.01
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    #根据数据输入进行预测
    Z = pred_func(np.c_[xx.ravel(),yy.ravel()])
    Z = Z.reshape(xx.shape)
    #将数据的预测结果进行可视化
    plt.contourf(xx,yy,Z,cmap=plt.cm.Spectral)
    plt.title("Linear predict")
    arg = np.squeeze(np.argwhere(Y==0),axis=1)
    arg2 = np.squeeze(np.argwhere(Y==1),axis=1)
    plt.scatter(X[arg,0],X[arg,1],s=100,c='b',marker='+')
    plt.scatter(X[arg2,0],X[arg2,1],s=40,c='r',marker='o')
    plt.show()


2.4 全连接网络与泛化能力


  • 全连接网络是一个通用的近似框架。只要有足够多的神经元、即使只有一个隐藏层的整网络,利用常用的Sigmoid、ReLU等激活函数,就可以无限逼近任何连续函数。


  • 浅层的网络具有更好的拟合能力,但是泛化能力相对较弱。


  • 深层的网络具有更好的泛化能力,但是拟合能力相对较弱。


2.4.1 wide_deep模型


wide_deep模型就是利用了深层网络与浅层网络的特征实现的组合模型,该模型由以下两个模型的输出结果叠加而成。


   wide模型是一个单层线性模型(浅层全连接网络模型)。


   deep模型是一个深度的全连接模型(深层全连接网络模型)。

目录
相关文章
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
12天前
|
缓存 并行计算 PyTorch
PyTorch CUDA内存管理优化:深度理解GPU资源分配与缓存机制
本文深入探讨了PyTorch中GPU内存管理的核心机制,特别是CUDA缓存分配器的作用与优化策略。文章分析了常见的“CUDA out of memory”问题及其成因,并通过实际案例(如Llama 1B模型训练)展示了内存分配模式。PyTorch的缓存分配器通过内存池化、延迟释放和碎片化优化等技术,显著提升了内存使用效率,减少了系统调用开销。此外,文章还介绍了高级优化方法,包括混合精度训练、梯度检查点技术及自定义内存分配器配置。这些策略有助于开发者在有限硬件资源下实现更高性能的深度学习模型训练与推理。
80 0
|
13天前
|
供应链 安全 网络协议
|
23天前
|
机器学习/深度学习 算法 JavaScript
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
|
27天前
|
缓存 数据中心 网络架构
5个减少网络延迟的简单方法
高速互联网对工作与娱乐至关重要,延迟和断线会严重影响效率和体验。本文探讨了导致连接缓慢的三个关键因素:吞吐量、带宽和延迟,并提供了减少延迟的实用方法。包括重启设备、关闭占用带宽的程序、使用有线连接、优化数据中心位置以及添加内容分发网络 (CDN) 等策略。虽然完全消除延迟不可能,但通过这些方法可显著改善网络性能。
235 7
|
1月前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
|
1月前
|
机器学习/深度学习 数据安全/隐私保护
基于神经网络逆同步控制方法的两变频调速电机控制系统matlab仿真
本课题针对两电机变频调速系统,提出基于神经网络a阶逆系统的控制方法。通过构造原系统的逆模型,结合线性闭环调节器实现张力与速度的精确解耦控制,并在MATLAB2022a中完成仿真。该方法利用神经网络克服非线性系统的不确定性,适用于参数变化和负载扰动场景,提升同步控制精度与系统稳定性。核心内容涵盖系统原理、数学建模及神经网络逆同步控制策略,为工业自动化提供了一种高效解决方案。
|
1月前
|
存储 监控 虚拟化
Hyper V上网优化:提升虚拟机网络速度
要优化Hyper-V虚拟机的网络速度,可从以下几方面入手:1. 优化虚拟交换机配置,如选择合适的交换机类型、启用SR-IOV、配置VLAN和QoS策略;2. 调整网络适配器设置,选择适当的适配器类型并启用VRQ等;3. 优化宿主机网络配置,更新网卡固件和驱动,启用硬件加速;4. 使用性能监视工具监控网络流量;5. 其他措施如启用硬件虚拟化、使用外部存储、配置NLB等。通过合理配置,可显著提升网络性能。
|
1月前
|
Kubernetes Shell Windows
【Azure K8S | AKS】在AKS的节点中抓取目标POD的网络包方法分享
在AKS中遇到复杂网络问题时,可通过以下步骤进入特定POD抓取网络包进行分析:1. 使用`kubectl get pods`确认Pod所在Node;2. 通过`kubectl node-shell`登录Node;3. 使用`crictl ps`找到Pod的Container ID;4. 获取PID并使用`nsenter`进入Pod的网络空间;5. 在`/var/tmp`目录下使用`tcpdump`抓包。完成后按Ctrl+C停止抓包。
70 12

热门文章

最新文章