【Pytorch神经网络理论篇】 08 Softmax函数(处理分类问题)

简介: oftmax函数本质也为激活函数,主要用于多分类问题,且要求分类互斥,分类器最后的输出单元需要Softmax 函数进行数值处理。

同学你好!本文章于2021年末编写,获得广泛的好评!

故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现,

Pytorch深度学习·理论篇(2023版)目录地址为:


CSDN独家 | 全网首发 | Pytorch深度学习·理论篇(2023版)目录


本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理进行讲解与分析,通过将深度学习知识与Pytorch的高效结合,帮助各位新入门的读者理解深度学习各个模板之间的关系,这些均是在Pytorch上实现的,可以有效的结合当前各位研究生的研究方向,设计人工智能的各个领域,是经过一年时间打磨的精品专栏!

https://v9999.blog.csdn.net/article/details/127587345


欢迎大家订阅(2023版)理论篇

以下为2021版原文~~~~


f2e61c62641d49e39f9ad6f303abd55d.png



1.1 Softmax函数简介


oftmax函数本质也为激活函数,主要用于多分类问题,且要求分类互斥,分类器最后的输出单元需要Softmax 函数进行数值处理。


Tip:在搭建网络模型的时候,需要用Softmax将目标分成几个,则在最后一层放几个节点


1.1.1Softmax函数构成


234b07ac506f4f6fa6c154e4151abbea.png


C为:分类的类别数


1.1.2 Softmax傻瓜式解释


将所有的值用e的n次方计算出来,求和之后计算每一个值的占比,保证其和为100%,即为概率


Tip:若多分类任务中的每个类之间不是互斥,则将其转化为多个二分类来组成


1.2 Softmax函数的原理剖析


f23570517068489dac2f8dbcb7d482fc.png


1.3 Softmax代码部分


1.3.1 常用的Softmax结构


torch.nn.Softmax(dim) 计算Softmax,参数代表计算维度
torch.nn.Softmax2d() 对每个图片进行Softmax处理
torch.nn.LogSoftmax(logits,name=None) 对Softmax取对数,常与NULLLoss联合使用,实现交叉熵损失的计算


1.3.2 Softmax代码实现


import torch
#定义模拟数据
# logits:神经网络的计算结果,一共两个数据,每个数据的结果中包括三个数值,其为三个分类的结果
logits = torch.autograd.Variable(torch.tensor([[2,0.5,6],[0.1,0,3]]))
# labels:神经网络的计算结果对应的标签,每个数值代表一个数据分类的编号,且相互互斥
labels = torch.autograd.Variable(torch.LongTensor([2,1]))
print(logits)
# 输出 tensor([[2.0000, 0.5000, 6.0000],[0.1000, 0.0000, 3.0000]])
print(labels)
# 输出 tensor([2, 1])
#计算 Softmax
print('Softmax:',torch.nn.Softmax(dim=1)(logits))
# 输出 Softmax: tensor([[0.0179, 0.0040, 0.9781],[0.0498, 0.0451, 0.9051]])
### LogSoftmax() + NULLoss() = CrossEntropyLoss()
#计算 LogSoftmax:对Softmax取对数
logsoftmax = torch.nn.LogSoftmax(dim=1)(logits)
print('LogSoftmax:',logsoftmax)
# 输出 LogSoftmax: tensor([[-4.0222, -5.5222, -0.0222],[-2.9997, -3.0997, -0.0997]])
#计算 NULLoss
output = torch.nn.NLLLoss()(logsoftmax,labels)
print('NULLoss:',output)
# 输出 NULLoss: tensor(1.5609)
#计算 CrossEntropyLoss
CrossEntropyLoss_return = torch.nn.CrossEntropyLoss()(logits,labels)
print('CrossEntropyLoss:',CrossEntropyLoss_return)
# 输出 CrossEntropyLoss: tensor(1.5609)
目录
相关文章
|
24天前
|
网络协议
计算机网络的分类
【10月更文挑战第11天】 计算机网络可按覆盖范围(局域网、城域网、广域网)、传输技术(有线、无线)、拓扑结构(星型、总线型、环型、网状型)、使用者(公用、专用)、交换方式(电路交换、分组交换)和服务类型(面向连接、无连接)等多种方式进行分类,每种分类方式揭示了网络的不同特性和应用场景。
|
2天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
12 3
|
22天前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
27 3
|
30天前
|
机器学习/深度学习 编解码
深度学习笔记(三):神经网络之九种激活函数Sigmoid、tanh、ReLU、ReLU6、Leaky Relu、ELU、Swish、Mish、Softmax详解
本文介绍了九种常用的神经网络激活函数:Sigmoid、tanh、ReLU、ReLU6、Leaky ReLU、ELU、Swish、Mish和Softmax,包括它们的定义、图像、优缺点以及在深度学习中的应用和代码实现。
109 0
深度学习笔记(三):神经网络之九种激活函数Sigmoid、tanh、ReLU、ReLU6、Leaky Relu、ELU、Swish、Mish、Softmax详解
|
24天前
|
存储 分布式计算 负载均衡
|
24天前
|
安全 区块链 数据库
|
1月前
|
机器学习/深度学习 数据可视化 算法
激活函数与神经网络------带你迅速了解sigmoid,tanh,ReLU等激活函数!!!
激活函数与神经网络------带你迅速了解sigmoid,tanh,ReLU等激活函数!!!
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
下一篇
无影云桌面