ChatGPT怎么突然变得这么强?华人博士万字长文深度拆解GPT-3.5能力起源(2)

简介: ChatGPT怎么突然变得这么强?华人博士万字长文深度拆解GPT-3.5能力起源

三、Code-Davinci-002和 Text-Davinci-002,在代码上训练,在指令上微调

在code-davinci-002和text-davinci-002之前,有两个中间模型,分别是 davinci-instruct-beta 和 text-davinci-001。两者在很多方面都比上述的两个-002模型差(例如,text-davinci-001 链式思维推理能力不强)。所以我们在本节中重点介绍 -002 型号。

3.1 复杂推理能力的来源和泛化到新任务的能力

我们关注code-davinci-002和text-davinci-002,这两兄弟是第一版的 GPT3.5 模型,一个用于代码,另一个用于文本。它们表现出了三种重要能力与初代 GPT-3 不同的能力:

  • 响应人类指令:以前,GPT-3 的输出主要训练集中常见的句子。现在的模型会针对指令 / 提示词生成更合理的答案(而不是相关但无用的句子)。


  • 泛化到没有见过的任务:当用于调整模型的指令数量超过一定的规模时,模型就可以自动在从没见过的新指令上也能生成有效的回答。这种能力对于上线部署至关重要,因为用户总会提新的问题,模型得答得出来才行。


  • 代码生成和代码理解:这个能力很显然,因为模型用代码训练过。


  • 利用思维链 (chain-of-thought) 进行复杂推理:初代 GPT3 的模型思维链推理的能力很弱甚至没有。code-davinci-002 和 text-davinci-002 是两个拥有足够强的思维链推理能力的模型。
  • 思维链推理之所以重要,是因为思维链可能是解锁突现能力和超越缩放法则 (scaling laws) 的关键。

这些能力从何而来?
与之前的模型相比,两个主要区别是指令微调和代码训练。具体来说:

  • 能够响应人类指令的能力是指令微调的直接产物。


  • 对没有见过的指令做出反馈的泛化能力是在指令数量超过一定程度之后自动出现的,T0、Flan 和 FlanPaLM 论文进一步证明了这一点。


  • 使用思维链进行复杂推理的能力很可能是代码训练的一个神奇的副产物。对此,我们有以下的事实作为一些支持:


  • 最初的 GPT-3 没有接受过代码训练,它不能做思维链。


  • text-davinci-001 模型,虽然经过了指令微调,但第一版思维链论文报告说,它的它思维链推理的能力非常弱 —— 所以指令微调可能不是思维链存在的原因,代码训练才是模型能做思维链推理的最可能原因。


  • PaLM 有 5% 的代码训练数据,可以做思维链。


  • Codex论文中的代码数据量为 159G ,大约是初代 GPT-3 5700 亿训练数据的28%。code-davinci-002 及其后续变体可以做思维链推理。


  • 在 HELM 测试中,Liang et al. (2022) 对不同模型进行了大规模评估。他们发现了针对代码训练的模型具有很强的语言推理能力,包括 120亿参数的code-cushman-001.。


  • 我们在 AI2 的工作也表明,当配备复杂的思维链时,code-davinci-002 在 GSM8K 等重要数学基准上是目前表现最好的模型。


  • 直觉来说,面向过程的编程 (procedure-oriented programming) 跟人类逐步解决任务的过程很类似,面向对象编程 (object-oriented programming) 跟人类将复杂任务分解为多个简单任务的过程很类似。
  • 以上所有观察结果都是代码与推理能力 / 思维链 之间的相关性,但不一定是因果性。这种相关性很有趣,但现在还是一个待研究的开放性问题。目前看来,我们没有非常确凿的证据证明代码就是思维链和复杂推理的原因。


  • 此外, 代码训练另一个可能的副产品是长距离依赖,正如Peter Liu所指出:「语言中的下个词语预测通常是非常局部的,而代码通常需要更长的依赖关系来做一些事情,比如前后括号的匹配或引用远处的函数定义」。
    这里我想进一步补充的是:由于面向对象编程中的类继承,代码也可能有助于模型建立编码层次结构的能力。我们将对这一假设的检验留给未来的工作。

 

另外还要注意一些细节差异:

  • text-davinci-002 与 code-davinci-002


  • Code-davinci-002 是基础模型,text-davinci-002 是指令微调 code-davinci-002 的产物(见 OpenAI 的文档)。它在以下数据上作了微调:(一)人工标注的指令和期待的输出;(二)由人工标注者选择的模型输出。


  • 当有上下文示例 (in-context example) 的时候, Code-davinci-002 更擅长上下文学习;当没有上下文示例 / 零样本的时候, text-davinci-002 在零样本任务完成方面表现更好。从这个意义上说,text-davinci-002 更符合人类的期待(因为对一个任务写上下文示例可能会比较麻烦)。


  • OpenAI 不太可能故意牺牲了上下文学习的能力换取零样本能力 —— 上下文学习能力的降低更多是指令学习的一个副作用,OpenAI 管这叫对齐税。


  • 001 模型(code-cushman-001 和 text-davinci-001)v.s. 002 模型(code-davinci-002 和 text-davinci-002)


  • 001 模型主要是为了做纯代码 / 纯文本任务;002 模型则深度融合了代码训练和指令微调,代码和文本都行。


  • Code-davinci-002 可能是第一个深度融合了代码训练和指令微调的模型。证据有:code-cushman-001 可以进行推理但在纯文本上表现不佳,text-davinci-001 在纯文本上表现不错但在推理上不大行。code-davinci-002 则可以同时做到这两点。

3.2 这些能力是在预训练之后已经存在还是在之后通过微调注入?


在这个阶段,我们已经确定了指令微调和代码训练的关键作用。一个重要的问题是如何进一步分析代码训练和指令微调的影响?具体来说:上述三种能力是否已经存在于初代的GPT-3中,只是通过指令和代码训练触发 / 解锁?或者这些能力在初代的 GPT-3 中并不存在,是通过指令和代码训练注入?如果答案已经在初代的 GPT-3 中,那么这些能力也应该在 OPT 中。因此,要复现这些能力,或许可以直接通过指令和代码调整 OPT。但是,code-davinci-002 也可能不是基于最初的 GPT-3 davinci,而是基于比初代 GPT-3 更大的模型。如果是这种情况,可能就没办法通过调整 OPT 来复现了。研究社区需要进一步弄清楚 OpenAI 训练了什么样的模型作为 code-davinci-002 的基础模型。

我们有以下的假设和证据:

  • code-davinci-002的基础模型可能不是初代GPT-3 davinci 模型。


  • 初代的GPT-3在数据集 C4 2016 - 2019 上训练,而 code-davinci-002 训练集则在延长到2021年才结束。因此 code-davinci-002 有可能在 C4 的 2019-2021 版本上训练。


  • 初代的 GPT-3 有一个大小为 2048 个词的上下文窗口。code-davinci-002 的上下文窗口则为 8192。GPT 系列使用绝对位置嵌入 (absolute positional embedding),直接对绝对位置嵌入进行外推而不经过训练是比较难的,并且会严重损害模型的性能(参考 Press et al., 2022)。如果 code-davinci-002 是基于初代GPT-3,那OpenAI 是如何扩展上下文窗口的?


  • 另一方面,无论基础模型是初代的 GPT-3 还是后来训练的模型, 遵循指令和零样本泛化的能力都可能已经存在于基础模型中,后来才通过指令微调来解锁 (而不是注入)。


  • 这主要是因为 OpenAI 的论文报告的指令数据量大小只有 77K,比预训练数据少了几个数量级。


  • 其他指令微调论文进一步证明了数据集大小对模型性能的对比,例如 Chung et al. (2022) 的工作中, Flan-PaLM 的指令微调仅为预训练计算的 0.4%。一般来说,指令数据会显著少于预训练数据。


  • 然而 ,模型的复杂推理能力可能是在预训练阶段通过代码数据注入。


  • 代码数据集的规模与上述指令微调的情况不同。这里的代码数据量足够大,可以占据训练数据的重要部分(例如,PaLM 有 8% 的代码训练数据)


  • 如上所述,在 code-davinci-002 之前的模型 text-davinci-001 大概没有在代码数据上面微调过,所以它的推理 / 思维链能力是非常差的,正如第一版思维链论文中所报告的那样,有时甚至比参数量更小的 code-cushman-001 还差。


  • 区分代码训练和指令微调效果的最好方法可能是比较 code-cushman-001、T5 和 FlanT5。


  • 因为它们具有相似的模型大小(110亿 和 120亿),相似的训练数据集 (C4),它们最大的区别就是有没有在代码上训练过 / 有没有做过指令微调。


  • 目前还没有这样的比较。我们把这个留给未来的研究。

 

四、text-davinci-003 和 ChatGPT,基于人类反馈的强化学习(Reinforcement Learning from Human Feedback, RLHF) 的威力


在当前阶段(2022 年 12 月), text-davinci-002、text-davinci-003 和 ChatGPT之间几乎没有严格的统计上的比较 ,主要是因为:

  • text-davinci-003 和 ChatGPT 在撰写本文时才发布不到一个月。


  • ChatGPT 不能通过 OpenAI API 被调用,所以想要在标准基准上测试它很麻烦。


所以在这些模型之间的比较更多是基于研究社区的集体经验 (统计上不是很严格)。不过,我们相信初步的描述性比较仍然可以揭示模型的机制。我们首先注意到以下 text-davinci-002,text-davinci-003 和 ChatGPT 之间的比较:

  • 所有三个模型都经过指令微调。


  • text-davinci-002 是一个经过监督学习指令微调 (supervised instruction tuning) 的模型。


  • text-davinci-003 和 ChatGPT 是基于人类反馈的强化学习的指令微调 (Instruction tuning with Reinforcement Learning from Human Feedback RLHF)。这是它们之间最显着的区别。


这意味着大多数新模型的行为都是 RLHF 的产物。那么让我们看看 RLHF 触发的能力:

  • 翔实的回应:text-davinci-003 的生成通常比 text-davinci-002长。ChatGPT 的回应则更加冗长,以至于用户必须明确要求「用一句话回答我」,才能得到更加简洁的回答。这是 RLHF 的直接产物。


  • 公正的回应:ChatGPT 通常对涉及多个实体利益的事件(例如政治事件)给出非常平衡的回答。这也是RLHF的产物。


  • 拒绝不当问题:这是内容过滤器和由 RLHF 触发的模型自身能力的结合,过滤器过滤掉一部分,然后模型再拒绝一部分。


  • 拒绝其知识范围之外的问题:例如,拒绝在2021 年 6 月之后发生的新事件(因为它没在这之后的数据上训练过)。这是 RLHF 最神奇的部分,因为它使模型能够隐式地区分哪些问题在其知识范围内,哪些问题不在其知识范围内。

 

有两件事情值得注意:


  • 所有的能力都是模型本来就有的, 而不是通过RLHF 注入的。RLHF 的作用是触发 / 解锁突现能力。这个论点主要来自于数据量大小的比较:因为与预训练的数据量相比,RLHF 占用的计算量 / 数据量要少得多。


  • 模型知道它不知道什么不是通过编写规则来实现的, 而是通过RLHF解锁的。这是一个非常令人惊讶的发现,因为 RLHF 的最初目标是让模型生成复合人类期望的回答,这更多是让模型生成安全的句子,而不是让模型知道它不知道的内容。

幕后发生的事情可能是:

  • ChatGPT: 通过牺牲上下文学习的能力换取建模对话历史的能力。这是一个基于经验的观测结果,因为 ChatGPT 似乎不像 text-davinci-003 那样受到上下文演示的强烈影响。


  • text-davinci-003:恢复了 text-davinci-002 所牺牲的上下文学习能力, 提高零样本的能力。根据instructGPT的论文,这是来自于强化学习调整阶段混入了语言建模的目标(而不是 RLHF 本身)。

 

五、总结当前阶段 GPT-3.5 的进化历程


到目前为止,我们已经仔细检查了沿着进化树出现的所有能力,下表总结了演化路径:

我们可以得出结论:

  • 语言生成能力 + 基础世界知识 + 上下文学习都是来自于预训练(davinci)。


  • 存储大量知识的能力来自 1750 亿的参数量。


  • 遵循指令和泛化到新任务的能力来自于扩大指令学习中指令的数量(Davinci-instruct-beta)。


  • 执行复杂推理的能力很可能来自于代码训练(code-davinci-002)。


  • 生成中立、客观的能力、安全和翔实的答案来自与人类的对齐。具体来说:


  • 如果是监督学习版,得到的模型是text-davinci-002。


  • 如果是强化学习版 (RLHF) ,得到的模型是text-davinci-003。


  • 无论是有监督还是 RLHF ,模型在很多任务的性能都无法超过 code-davinci-002 ,这种因为对齐而造成性能衰退的现象叫做对齐税。
  • 对话能力也来自于 RLHF(ChatGPT),具体来说它牺牲了上下文学习的能力,来换取:


  • 建模对话历史。


  • 增加对话信息量。


  • 拒绝模型知识范围之外的问题。

 

相关文章
|
9月前
|
存储 运维 数据可视化
驾驭数据的能力,如同使用ChatGPT一样,是现代职场人的必修课
现代职场所比拼的除了聪明才智、过往经验之外,很多软性技能也尤为重要。现在已经不是像网络游戏开局拿着一根小木棍打天下的时代了,这将是一场武装到牙齿的较量,对于各类“装备”的驾驭能力有时候甚至可以决定胜负。
驾驭数据的能力,如同使用ChatGPT一样,是现代职场人的必修课
|
9月前
|
存储 算法 网络架构
问 ChatGPT 关于GPT的事情:压缩篇
问 ChatGPT 关于GPT的事情:压缩篇
94 0
|
9月前
|
PyTorch 调度 算法框架/工具
问 ChatGPT 关于GPT的事情:扩展篇
问 ChatGPT 关于GPT的事情:扩展篇
105 0
|
6天前
|
自然语言处理 自动驾驶 机器人
续命Scaling Law?世界模型GPT-4o让智能体超级规划,OSU华人一作
GPT-4o是OpenAI推出的先进语言模型,不仅在自然语言处理上表现出色,更在智能体规划领域展现了巨大潜力。它能模拟预测行动结果,提供决策支持,实现高效智能规划。适用于自动驾驶、机器人等领域,助力复杂任务的优化执行。尽管面临计算资源和环境一致性等挑战,GPT-4o仍为智能体规划带来新机遇。论文地址:https://arxiv.org/abs/2411.06559
18 2
|
7月前
|
人工智能 自然语言处理 测试技术
RAG微调Llama 3竟超越GPT-4!英伟达GaTech华人学者提出RankRAG框架
【7月更文挑战第21天】英伟达与GaTech华人团队提出RankRAG框架,通过在Llama 3模型上微调,实现检索和生成的统一,超越GPT-4在知识密集型任务的表现。RankRAG利用指令微调让模型同时学习上下文排名和生成,减少了对独立检索模型的依赖。在多基准测试中胜过GPT-4,展示出提升LLMs性能的新潜力。尽管面临数据需求大和计算成本高的挑战,RankRAG为RAG任务优化提供了新途径。[[1](https://arxiv.org/abs/2407.02485)]
101 3
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
o1医学领域大胜GPT-4,性能暴涨!顶尖华人团队激动发文:离AI医生越来越近了
【10月更文挑战第29天】近日,一支顶尖华人团队发布论文《A Preliminary Study of o1 in Medicine: Are We Closer to an AI Doctor?》,揭示了OpenAI最新语言模型o1在医学领域的卓越表现。研究显示,o1在概念识别、文本总结、问答等任务上远超GPT-4,显著提升了医学领域的AI应用水平,向实现AI医生的目标迈进了一大步。
89 3
|
4月前
|
算法 搜索推荐 机器人
【ChatGPT】参加计算机科学考试(GPT-4对比GPT-3.5)
【ChatGPT】参加计算机科学考试(GPT-4对比GPT-3.5)
68 0
|
4月前
|
数据采集 自然语言处理 并行计算
ChatGPT高效提问—基础知识(GPT与ChatGPT)
ChatGPT高效提问—基础知识(GPT与ChatGPT)
65 0
|
9月前
|
机器学习/深度学习 自然语言处理
解析GPT-3、GPT-4和ChatGPT关系-迈向自然语言处理的新高度“
解析GPT-3、GPT-4和ChatGPT关系-迈向自然语言处理的新高度“
322 1
|
9月前
|
人工智能 JSON 机器人
【Chat GPT】用 ChatGPT 运行 Python
【Chat GPT】用 ChatGPT 运行 Python
182 1

热门文章

最新文章