【Chat GPT】用 ChatGPT 运行 Python

简介: 【Chat GPT】用 ChatGPT 运行 Python

前言


ChatGPT 是一个基于 GPT-2 模型的人工智能聊天机器人,它可以进行智能对话,同时还支持 Python 编程语言的运行,可以通过 API 接口进行调用。本文将介绍如何使用 ChatGPT 运行 Python 代码,并提供一个实际代码案例。


ChatGPT 简介


ChatGPT 是一个可以与人进行智能对话的人工智能聊天机器人,它基于 GPT-2 模型开发。GPT-2 是 OpenAI 公司开发的一种基于深度学习的自然语言处理模型,它能够生成高质量的文章、诗歌、故事等,同时还能够进行智能对话。ChatGPT 利用 GPT-2 模型进行自然语言理解和生成,可以与用户进行流畅的对话。


ChatGPT 接口


ChatGPT 提供了 API 接口,可以通过 HTTP 请求向 ChatGPT 发送消息并接收机器人的回复。发送的消息必须使用 JSON 格式,包含以下字段:

 
{
    "message": "你好"
}


接收到的机器人的回复也是一个 JSON 字符串,包含以下字段:

{
    "message": "你好呀!"
}


其中,message 字段表示回复的文本内容。


ChatGPT Python SDK


为了方便使用 ChatGPT,我们还提供了一个 Python SDK。可以通过 pip 安装:

pip install chatgpt


安装完成后,可以通过以下代码进行测试:

from chatgpt import ChatGPT
 
chatbot = ChatGPT()
response = chatbot.get_response("你好")
print(response)

这段代码会向 ChatGPT 发送一个消息:“你好”,并输出机器人的回复。


ChatGPT Python 示例代码


下面我们来介绍一个实际的 ChatGPT Python 示例代码。这个代码会向 ChatGPT 发送用户输入的问题,然后调用一个外部的 API 获取答案,最后将答案发送给用户。

首先,我们需要导入必要的依赖:
import json
import requests
from chatgpt import ChatGPT
然后,我们需要定义 ChatGPT 的 API 地址和 API Key:
CHATGPT_API_URL = "http://api.chatgpt.com/message"
CHATGPT_API_KEY = "YOUR_API_KEY_HERE"
接着,我们需要定义一个函数,用来向外部的 API 发送问题并获取答案:
def get_answer(question):
    API_URL = "https://api.openai.com/v1/engine/davinci-codex/search"
    API_KEY = "YOUR_API_KEY_HERE"
    prompt = f"What is the answer to the question: {question}?"
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {API_KEY}",
    }
    data = {
        "model": "davinci-codex-2022-06-23",
        "prompt": prompt,
        "max_tokens": 30,
        "temperature": 0,
        "n": 1,
        "stop": [".", "?", "!"],
    }
    response = requests.post(API_URL, headers=headers, json=data).json()
    answer = response["data"][0]["answer"]["text"].strip()
    return answer

这个函数使用了 OpenAI 的 GPT-3 模型,接收一个问题作为输入,调用 API 获取答案,并返回答案。

最后,我们需要定义一个主函数,用来接收用户的输入,向 ChatGPT 发送问题,并获取答案:
def main():
    chatbot = ChatGPT(api_url=CHATGPT_API_URL, api_key=CHATGPT_API_KEY)
    while True:
        question = input("> ")
        response = chatbot.get_response(question)
        answer = get_answer(response)
        print(answer)

这个主函数使用一个循环,等待用户输入问题。每次接收到问题后,它会向 ChatGPT 发送问题,并获取机器人的回复。然后,它会调用 get_answer() 函数获取答案,并将答案输出到控制台。

最后,我们需要在程序末尾调用主函数:
if __name__ == "__main__":
    main()

这个程序的完整代码如下:

import json
import requests
from chatgpt import ChatGPT
 
CHATGPT_API_URL = "http://api.chatgpt.com/message"
CHATGPT_API_KEY = "YOUR_API_KEY_HERE"
 
def get_answer(question):
    API_URL = "https://api.openai.com/v1/engine/davinci-codex/search"
    API_KEY = "YOUR_API_KEY_HERE"
    prompt = f"What is the answer to the question: {question}?"
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {API_KEY}",
    }
    data = {
        "model": "davinci-codex-2022-06-23",
        "prompt": prompt,
        "max_tokens": 30,
        "temperature": 0,
        "n": 1,
        "stop": [".", "?", "!"],
    }
    response = requests.post(API_URL, headers=headers, json=data).json()
    answer = response["data"][0]["answer"]["text"].strip()
    return answer
 
def main():
    chatbot = ChatGPT(api_url=CHATGPT_API_URL, api_key=CHATGPT_API_KEY)
    while True:
        question = input("> ")
        response = chatbot.get_response(question)
        answer = get_answer(response)
        print(answer)
 
if __name__ == "__main__":
    main()


总结


这个程序使用 ChatGPT 进行智能对话,并使用 OpenAI 的 GPT-3 模型获取答案。你可以将 YOUR_API_KEY_HERE 替换成你自己的 API Key,运行这个程序,进行测试。

相关文章
|
14天前
|
存储 NoSQL Redis
在Python Web开发过程中,为什么Redis运行速度快
【5月更文挑战第15天】Redis在Python Web开发中运行速度快,原因包括:1) 丰富数据类型满足多样化需求;2) 简单数据模型提升查询效率;3) 单线程模型结合非阻塞I/O实现高效处理;4) 持久化机制保证数据安全;5) 二进制协议与管道技术优化网络通信。这些因素共同确保Redis能处理大量请求并保持高性能。
44 1
|
8天前
|
数据可视化 Python
六种酷炫Python运行进度条
六种酷炫Python运行进度条
|
14天前
|
人工智能 iOS开发 MacOS
[译][AI OpenAI] 引入 GPT-4o 及更多工具至免费版 ChatGPT 用户
我们推出了最新的旗舰模型 GPT-4o,并为免费版 ChatGPT 用户提供更多功能,包括更快的速度、改进的文本、语音和视觉能力,以及新的桌面应用程序和简化的界面。
[译][AI OpenAI] 引入 GPT-4o 及更多工具至免费版 ChatGPT 用户
|
14天前
|
数据采集 Web App开发 数据处理
Lua vs. Python:哪个更适合构建稳定可靠的长期运行爬虫?
Lua vs. Python:哪个更适合构建稳定可靠的长期运行爬虫?
|
14天前
|
机器学习/深度学习 人工智能 大数据
AI时代Python金融大数据分析实战:ChatGPT让金融大数据分析插上翅膀
AI时代Python金融大数据分析实战:ChatGPT让金融大数据分析插上翅膀
163 6
|
14天前
|
缓存 Shell 开发工具
[oeasy]python0016_在vim中直接运行python程序
在 Vim 编辑器中,可以通过`:!`命令来执行外部程序,例如`:!python3 oeasy.py`来运行Python程序。如果想在不退出Vim的情况下运行当前编辑的Python文件,可以使用`%`符号代表当前文件名,所以`:!python3 %`同样能运行程序。此外,可以使用`|`符号连续执行命令,例如`:w|!python3 %`会先保存文件(`w`)然后运行Python程序。这样,就可以在不离开Vim的情况下完成编辑、保存和运行Python程序的流程。
21 0
|
14天前
|
SQL DataWorks 安全
DataWorks产品使用合集之DataWorks资源里python运行时候,查看中途打印日志如何解决
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
27 0
|
14天前
|
测试技术 Python
python运行集成测试
【4月更文挑战第22天】
12 1
|
14天前
|
运维 监控 Serverless
Serverless 应用引擎产品使用之阿里函数计算中在自定义环境下用debian10运行django,用官方层的python3.9,配置好环境变量后发现自定义层的django找不到了如何解决
阿里云Serverless 应用引擎(SAE)提供了完整的微服务应用生命周期管理能力,包括应用部署、服务治理、开发运维、资源管理等功能,并通过扩展功能支持多环境管理、API Gateway、事件驱动等高级应用场景,帮助企业快速构建、部署、运维和扩展微服务架构,实现Serverless化的应用部署与运维模式。以下是对SAE产品使用合集的概述,包括应用管理、服务治理、开发运维、资源管理等方面。
|
14天前
|
XML 测试技术 持续交付
python运行集成测试
【4月更文挑战第21天】
23 2