智慧交通day02-车流量检测实现06:目标估计模型-卡尔曼滤波(汇总)

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 智慧交通day02-车流量检测实现06:目标估计模型-卡尔曼滤波(汇总)

20200508204107899.png


from __future__ import print_function
from numba import jit
import numpy as np
from scipy.optimize import linear_sum_assignment
from filterpy.kalman import KalmanFilter
#计算IOU(交并比)
@jit
def iou(bb_test,bb_gt):
    """
      在两个box间计算IOU
      :param bb_test: box1 = [x1,y1,x2,y2] 左上角坐标
      :param bb_gt: box2 = [x1,y1,x2,y2] 右下角坐标
      :return: 交并比IOU
    """
    #在两个box间的左上角坐标的最大值
    xx1 = np.maximum(bb_test[0],bb_gt[0])#左上角坐标x的最大值
    yy1 = np.maximum(bb_test[1],bb_gt[1])#左上角坐标y的最大值
    #在两个box间的右下角坐标的最小值
    xx2 = np.minimum(bb_test[2],bb_gt[2])#右下角坐标x的最小值
    yy2 = np.minimum(bb_test[3],bb_test[3])#右下角坐标y的最小值
    #交的宽高
    w = np.maximum(0,xx2-xx1)
    h = np.maximum(0,yy2-yy1)
    #交的面积
    wh = w*h
    #并的面积
    s = ((bb_test[2] - bb_test[0]) * (bb_test[3] - bb_test[1])
            + (bb_gt[2] - bb_gt[0]) * (bb_gt[3] - bb_gt[1]) - wh)
    #计算IOU并且返回IOU
    o_rate = wh/s
    return o_rate
#左上角坐标[x1,y1]和右下角坐标[x2,y2],
#将候选框从坐标形式[x1,y1,x2,y2]转换为中心点坐标和面积的形式[x,y,s,r]
#其中x,y是框的中心坐标,s是面积,尺度,r是宽高比
def convert_bbox_to_z(bbox):
    """
      将[x1,y1,x2,y2]形式的检测框转为滤波器的状态表示形式[x,y,s,r]。其中x,y是框的中心坐标,s是面积,尺度,r是宽高比
      :param bbox: [x1,y1,x2,y2] 分别是左上角坐标和右下角坐标
      :return: [ x, y, s, r ] 4行1列,其中x,y是box中心位置的坐标,s是面积,r是纵横比w/h
    """
    w = bbox[2] - bbox[0]#宽 x2-x1:#右下角的x坐标 - 左上角的x坐标 = 检测框的宽
    h = bbox[3] - bbox[1]#高 y2-y1:#右下角的y坐标 - 左上角的y坐标 = 检测框的高
    x = bbox[0] + w/2.0#检测框的中心坐标x:  x1+(x2-x1)/2.0 #左上角的x坐标 + 宽/2 = 检测框中心位置的x坐标
    y = bbox[1] + h/2.0#检测框的中心坐标y: y1+(y2-y1)/2.0 #左上角的y坐标 + 高/2 = 检测框中心位置的y坐标
    s = w*h #检测框的面积 #检测框的宽 * 高 = 检测框面积
    r = w/float(h) #检测框的宽高比
    # 因为卡尔曼滤波器的输入格式要求为4行1列,因此该[x, y, s, r]的形状要转换为4行1列再输入到卡尔曼滤波器
    return np.array([x,y,s,r]).reshape([4,1]) #kalman需要四行一列的形式
#将候选框从中心面积[x,y,s,r]的形式转换成左上角坐标和右下角坐标[x1,y1,x2,y2]的形式
#即:将[cx,cy,s,r]的目标框表示转为[x_min,y_min,x_max,y_max]的形式
def convert_x_to_bbox(x,score=None):
    """
        将[cx,cy,s,r]的目标框表示转为[x_min,y_min,x_max,y_max]的形式
        :param x:[ x, y, s, r ],其中x,y是box中心位置的坐标,s是面积,r是纵横比w/h
        :param score: 置信度
        :return:[x1,y1,x2,y2],左上角坐标和右下角坐标
        """
    """
        x[2]:s是面积,原公式s的来源为s = w * h,即检测框的宽 * 高 = 检测框面积。
        x[3]:r是纵横比w/h,原公式r的来源为r = w / float(h),即检测框的宽w / 高h = 宽高比。
        x[2] * x[3]:s*r 即(w * h) * (w / float(h)) = w^2
        sqrt(x[2] * x[3]):sqrt(w^2) = w
        """
    w = np.sqrt(x[2] * x[3]) #w =sqrt(s*r)=sqrt(s*w/h)=sqrt(w*h * w/h)=sqrt(w*w)
    h = x[2]/w #h =s/w =w*h/w =h
    x1 = x[0]-w/2.0 #左上角x坐标:x1 = x-w/2.0 #检测框中心位置的x坐标 - 宽 / 2
    y1 = x[1]-h/2.0 #左上角y坐标:y1 = y-h/2.0 #检测框中心位置的y坐标 - 高 / 2
    x2 = x[0]+w/2.0 #右下角x坐标:x2 = x+w/2.0 #检测框中心位置的x坐标 + 宽 / 2
    y2 = x[1]+h/2.0 #右下角y坐标:y2 = y+h/2.0 #检测框中心位置的y坐标 + 高 / 2
    if score is None:
        return np.array([x1,y1,x2,y2]).reshape((1,4))
    else:
        return np.array([x1,x1,x2,y2,score]).reshape((1,5))
"""
卡尔曼滤波器进行跟踪的相关内容的实现
    目标估计模型:
        1.根据上一帧的目标框结果来预测当前帧的目标框状态,预测边界框(目标框)的模型定义为一个等速运动/匀速运动模型。
        2.每个目标框都有对应的一个卡尔曼滤波器(KalmanBoxTracker实例对象),
          KalmanBoxTracker类中的实例属性专门负责记录其对应的一个目标框中各种统计参数,
          并且使用类属性负责记录卡尔曼滤波器的创建个数,增加一个目标框就增加一个卡尔曼滤波器(KalmanBoxTracker实例对象)。  
        3.yoloV3、卡尔曼滤波器预测/更新流程步骤
            1.第一步:
                yoloV3目标检测阶段:
                    --> 1.检测到目标则创建检测目标链/跟踪目标链,反之检测不到目标则重新循环目标检测。
                    --> 2.检测目标链/跟踪目标链不为空则进入卡尔曼滤波器predict预测阶段,反之为空则重新循环目标检测。
            2.第二步:
                卡尔曼滤波器predict预测阶段:
                    连续多次预测而不进行一次更新操作,那么代表了每次预测之后所进行的“预测目标和检测目标之间的”相似度匹配都不成功,
                    所以才会出现连续多次的“预测然后相似度匹配失败的”情况,导致不会进入一次更新阶段。
                    如果一次预测然后相似度匹配成功的话,那么然后就会进入更新阶段。
                    --> 1.目标位置预测
                                1.kf.predict():目标位置预测
                                2.目标框预测总次数:age+=1。
                                3.if time_since_update > 0:
                                     hit_streak = 0
                                  time_since_update += 1
                                  1.连续预测的次数,每执行predict一次即进行time_since_update+=1。
                                  2.在连续预测(连续执行predict)的过程中,一旦执行update的话,time_since_update就会被重置为0。
                                  3.在连续预测(连续执行predict)的过程中,只要连续预测的次数time_since_update大于0的话,
                                    就会把hit_streak(连续更新的次数)重置为0,表示连续预测的过程中没有出现过一次更新状态更新向量x(状态变量x)的操作,
                                    即连续预测的过程中没有执行过一次update。
                                  4.在连续更新(连续执行update)的过程中,一旦开始连续执行predict两次或以上的情况下,
                                    当连续第一次执行predict时,因为time_since_update仍然为0,并不会把hit_streak重置为0,
                                    然后才会进行time_since_update+=1;
                                    当连续第二次执行predict时,因为time_since_update已经为1,那么便会把hit_streak重置为0,
                                    然后继续进行time_since_update+=1。
                    --> 2.预测的目标和检测的目标之间的相似度匹配成功则进入update更新阶段,反之匹配失败则删除跟踪目标。
            3.第三步:
                卡尔曼滤波器update更新阶段:
                    如果一次预测然后“预测目标和检测目标之间的”相似度匹配成功的话,那么然后就会进入更新阶段。
                    kf.update([x,y,s,r]):使用的是通过yoloV3得到的“并且和预测框相匹配的”检测框来更新预测框。
                    --> 1.目标位置信息更新到检测目标链/跟踪目标链 
                                1.目标框更新总次数:hits+=1。
                                2.history = []
                                  time_since_update = 0
                                  hit_streak += 1
                                    1.history列表用于在预测阶段保存单个目标框连续预测的多个结果,一旦执行update就会清空history列表。
                                    2.连续更新的次数,每执行update一次即进行hit_streak+=1。
                                    3.在连续预测(连续执行predict)的过程中,一旦执行update的话,time_since_update就会被重置为0。
                                    4.在连续预测(连续执行predict)的过程中,只要连续预测的次数time_since_update大于0的话,
                                      就会把hit_streak(连续更新的次数)重置为0,表示连续预测的过程中没有出现过一次更新状态更新向量x(状态变量x)的操作,
                                      即连续预测的过程中没有执行过一次update。
                                    5.在连续更新(连续执行update)的过程中,一旦开始连续执行predict两次或以上的情况下,
                                      当连续第一次执行predict时,因为time_since_update仍然为0,并不会把hit_streak重置为0,
                                      然后才会进行time_since_update+=1;
                                      当连续第二次执行predict时,因为time_since_update已经为1,那么便会把hit_streak重置为0,
                                      然后继续进行time_since_update+=1。
                    --> 2.目标位置修正。
                                1.kf.update([x,y,s,r]):
                                        使用观测到的目标框bbox更新状态变量x(状态更新向量x)。
                                        使用的是通过yoloV3得到的“并且和预测框相匹配的”检测框来更新卡尔曼滤波器得到的预测框。
    1.初始化、预测、更新
        1.__init__(bbox):
            初始化卡尔曼滤波器的状态更新向量x(状态变量x)、观测输入[x,y,s,r](通过[x1,y1,x2,y2]转化而来)、状态转移矩阵F、
            量测矩阵H(观测矩阵H)、测量噪声的协方差矩阵R、先验估计的协方差矩阵P、过程激励噪声的协方差矩阵Q。
        2.update(bbox):根据观测输入来对状态更新向量x(状态变量x)进行更新
        3.predict():根据状态更新向量x(状态变量x)更新的结果来预测目标的边界框
    2.状态变量、状态转移矩阵F、量测矩阵H(观测矩阵H)、测量噪声的协方差矩阵R、先验估计的协方差矩阵P、过程激励噪声的协方差矩阵Q
        1.状态更新向量x(状态变量x)
            状态更新向量x(状态变量x)的设定是一个7维向量:x=[u,v,s,r,u^,v^,s^]T。
            u、v分别表示目标框的中心点位置的x、y坐标,s表示目标框的面积,r表示目标框的纵横比/宽高比。
            u^、v^、s^分别表示横向u(x方向)、纵向v(y方向)、面积s的运动变化速率。
            u、v、s、r初始化:根据第一帧的观测结果进行初始化。
            u^、v^、s^初始化:当第一帧开始的时候初始化为0,到后面帧时会根据预测的结果来进行变化。
        2.状态转移矩阵F
            定义的是一个7*7的方阵(其对角线上的值都是1)。。
            运动形式和转换矩阵的确定都是基于匀速运动模型,状态转移矩阵F根据运动学公式确定,跟踪的目标假设为一个匀速运动的目标。
            通过7*7的状态转移矩阵F 乘以 7*1的状态更新向量x(状态变量x)即可得到一个更新后的7*1的状态更新向量x,
            其中更新后的u、v、s即为当前帧结果。
        3.量测矩阵H(观测矩阵H)
            量测矩阵H(观测矩阵H),定义的是一个4*7的矩阵。
            通过4*7的量测矩阵H(观测矩阵H) 乘以 7*1的状态更新向量x(状态变量x) 即可得到一个 4*1的[u,v,s,r]的估计值。
        4.测量噪声的协方差矩阵R、先验估计的协方差矩阵P、过程激励噪声的协方差矩阵Q
            1.测量噪声的协方差矩阵R:diag([1,1,10,10]T)
            2.先验估计的协方差矩阵P:diag([10,10,10,10,1e4,1e4,1e4]T)。1e4:1x10的4次方。
            3.过程激励噪声的协方差矩阵Q:diag([1,1,1,1,0.01,0.01,1e-4]T)。1e-4:1x10的-4次方。
            4.1e数字的含义
                1e4:1x10的4次方
                1e-4:1x10的-4次方
            5.diag表示对角矩阵,写作为diag(a1,a2,...,an)的对角矩阵实际表示为主对角线上的值依次为a1,a2,...,an,
              而主对角线之外的元素皆为0的矩阵。
              对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,...,an) 。
              对角矩阵可以认为是矩阵中最简单的一种,值得一提的是:对角线上的元素可以为 0 或其他值,对角线上元素相等的对角矩阵称为数量矩阵;
              对角线上元素全为1的对角矩阵称为单位矩阵。对角矩阵的运算包括和、差运算、数乘运算、同阶对角阵的乘积运算,且结果仍为对角阵。
"""
"""
1.跟踪器链(列表):
    实际就是多个的卡尔曼滤波KalmanBoxTracker自定义类的实例对象组成的列表。
    每个目标框都有对应的一个卡尔曼滤波器(KalmanBoxTracker实例对象),
    KalmanBoxTracker类中的实例属性专门负责记录其对应的一个目标框中各种统计参数,
    并且使用类属性负责记录卡尔曼滤波器的创建个数,增加一个目标框就增加一个卡尔曼滤波器(KalmanBoxTracker实例对象)。
    把每个卡尔曼滤波器(KalmanBoxTracker实例对象)都存储到跟踪器链(列表)中。
2.unmatched_detections(列表):
    1.检测框中出现新目标,但此时预测框(跟踪框)中仍不不存在该目标,
      那么就需要在创建新目标对应的预测框/跟踪框(KalmanBoxTracker类的实例对象),
      然后把新目标对应的KalmanBoxTracker类的实例对象放到跟踪器链(列表)中。
    2.同时如果因为“跟踪框和检测框之间的”两两组合的匹配度IOU值小于iou阈值,
      则也要把目标检测框放到unmatched_detections中。
3.unmatched_trackers(列表):
    1.当跟踪目标失败或目标离开了画面时,也即目标从检测框中消失了,就应把目标对应的跟踪框(预测框)从跟踪器链中删除。
      unmatched_trackers列表中保存的正是跟踪失败即离开画面的目标,但该目标对应的预测框/跟踪框(KalmanBoxTracker类的实例对象)
      此时仍然存在于跟踪器链(列表)中,因此就需要把该目标对应的预测框/跟踪框(KalmanBoxTracker类的实例对象)从跟踪器链(列表)中删除出去。
    2.同时如果因为“跟踪框和检测框之间的”两两组合的匹配度IOU值小于iou阈值,
      则也要把跟踪目标框放到unmatched_trackers中。
"""
#卡尔曼滤波:对于目标框的状态进行预测
class KalmanBoxTracker(object):
    """
        每个目标框都有对应的一个卡尔曼滤波器(KalmanBoxTracker实例对象),
        KalmanBoxTracker类中的实例属性专门负责记录其对应的一个目标框中各种统计参数,
        并且使用类属性负责记录卡尔曼滤波器的创建个数,增加一个目标框就增加一个卡尔曼滤波器(KalmanBoxTracker实例对象)。
    """
    #记录跟踪框的个数
    count = 0 #类属性负责记录卡尔曼滤波器的创建个数,增加一个目标框就增加一个卡尔曼滤波器(KalmanBoxTracker实例对象
    """
        __init__(bbox)
            使用目标框bbox为卡尔曼滤波的状态进行初始化。初始化时传入bbox,即根据观测到的检测框的结果来进行初始化。
            每个目标框都有对应的一个卡尔曼滤波器(KalmanBoxTracker实例对象),
            KalmanBoxTracker类中的实例属性专门负责记录其对应的一个目标框中各种统计参数,
            并且使用类属性负责记录卡尔曼滤波器的创建个数,增加一个目标框就增加一个卡尔曼滤波器(KalmanBoxTracker实例对象)。
            1.kf = KalmanFilter(dim_x=7, dim_z=4)
                    定义一个卡尔曼滤波器,利用这个卡尔曼滤波器对目标的状态进行估计。
                    dim_x=7定义是一个7维的状态更新向量x(状态变量x):x=[u,v,s,r,u^,v^,s^]T。
                    dim_z=4定义是一个4维的观测输入,即中心面积的形式[x,y,s,r],即[检测框中心位置的x坐标,y坐标,面积,宽高比]。
            2.kf.F = np.array(7*7的方阵)
                    状态转移矩阵F,定义的是一个7*7的方阵其(对角线上的值都是1)。
                    通过7*7的状态转移矩阵F 乘以 7*1的状态更新向量x(状态变量x)即可得到一个更新后的7*1的状态更新向量x,
                    其中更新后的u、v、s即为当前帧结果。
                    通过状态转移矩阵对当前的观测结果进行估计获得预测的结果,然后用当前的预测的结果来作为下一次估计预测的基础。
            3.kf.H = np.array(4*7的矩阵)
                    量测矩阵H(观测矩阵H),定义的是一个4*7的矩阵。
                    通过4*7的量测矩阵H(观测矩阵H) 乘以 7*1的状态更新向量x(状态变量x) 即可得到一个 4*1的[u,v,s,r]的估计值。
            4.相应的协方差参数的设定,根据经验值进行设定。
                    1.R是测量噪声的协方差矩阵,即真实值与测量值差的协方差。
                      R=diag([1,1,10,10]T)
                            kf.R[2:, 2:] *= 10.
                    2.P是先验估计的协方差矩阵
                      diag([10,10,10,10,1e4,1e4,1e4]T)。1e4:1x10的4次方。
                            kf.P[4:, 4:] *= 1000.  # 设置了一个较大的值,给无法观测的初始速度带来很大的不确定性
                            kf.P *= 10.
                    3.Q是过程激励噪声的协方差矩阵
                      diag([1,1,1,1,0.01,0.01,1e-4]T)。1e-4:1x10的-4次方。
                            kf.Q[-1, -1] *= 0.01
                            kf.Q[4:, 4:] *= 0.01
            5.kf.x[:4] = convert_bbox_to_z(bbox)
                    convert_bbox_to_z负责将[x1,y1,x2,y2]形式的检测框bbox转为中心面积的形式[x,y,s,r]。
                    状态更新向量x(状态变量x)设定是一个七维向量:x=[u,v,s,r,u^,v^,s^]T。
                    x[:4]即表示 u、v、s、r初始化为第一帧bbox观测到的结果[x,y,s,r]。
            6.单个目标框对应的单个卡尔曼滤波器中的统计参数的更新
                每个目标框都有对应的一个卡尔曼滤波器(KalmanBoxTracker实例对象),
                KalmanBoxTracker类中的实例属性专门负责记录其对应的一个目标框中各种统计参数,
                并且使用类属性负责记录卡尔曼滤波器的创建个数,增加一个目标框就增加一个卡尔曼滤波器(KalmanBoxTracker实例对象)。
                1.卡尔曼滤波器的个数
                    有多少个目标框就有多少个卡尔曼滤波器,每个目标框都会有一个卡尔曼滤波器,即每个目标框都会有一个KalmanBoxTracker实例对象。
                    count = 0:类属性负责记录卡尔曼滤波器的创建个数,增加一个目标框就增加一个卡尔曼滤波器(KalmanBoxTracker实例对象。
                    id = KalmanBoxTracker.count:卡尔曼滤波器的个数,即目标框的个数。
                    KalmanBoxTracker.count += 1:每增加一个目标框,即增加一个KalmanBoxTracker实例对象(卡尔曼滤波器),那么类属性count+=1。
                2.统计一个目标框对应的卡尔曼滤波器中各参数统计的次数
                    1.age = 0:
                        该目标框进行预测的总次数。每执行predict一次,便age+=1。
                    2.hits = 0:
                        该目标框进行更新的总次数。每执行update一次,便hits+=1。
                    3.time_since_update = 0
                        1.连续预测的次数,每执行predict一次即进行time_since_update+=1。
                        2.在连续预测(连续执行predict)的过程中,一旦执行update的话,time_since_update就会被重置为0。
                        3.在连续预测(连续执行predict)的过程中,只要连续预测的次数time_since_update大于0的话,
                          就会把hit_streak(连续更新的次数)重置为0,表示连续预测的过程中没有出现过一次更新状态更新向量x(状态变量x)的操作,
                          即连续预测的过程中没有执行过一次update。
                    4.hit_streak = 0
                        1.连续更新的次数,每执行update一次即进行hit_streak+=1。
                        2.在连续更新(连续执行update)的过程中,一旦开始连续执行predict两次或以上的情况下,
                          当连续第一次执行predict时,因为time_since_update仍然为0,并不会把hit_streak重置为0,
                          然后才会进行time_since_update+=1;
                          当连续第二次执行predict时,因为time_since_update已经为1,那么便会把hit_streak重置为0,
                          然后继续进行time_since_update+=1。
            7.history = []:
                    保存单个目标框连续预测的多个结果到history列表中,一旦执行update就会清空history列表。
                    将预测的候选框从中心面积的形式[x,y,s,r]转换为坐标的形式[x1,y1,x2,y2] 的bbox 再保存到 history列表中。
        """
    # 内部使用KalmanFilter,7个状态变量和4个观测输入
    def __init__(self,bbox):
        """
         初始化边界框和跟踪器
         :param bbox:
        """
        #等速模型
        #卡尔曼滤波:状态转移矩阵:7,观测输入矩阵:4
        self.kf = KalmanFilter(dim_x=7,dim_z=4) #初始化卡尔曼滤波器
        # F:状态转移/状态变化矩阵 7*7 用当前的矩阵预测下一次的估计
        self.kf.F = np.array([
             [1, 0, 0, 0, 1, 0, 0],
             [0, 1, 0, 0, 0, 1, 0],
             [0, 0, 1, 0, 0, 0, 1],
             [0, 0, 0, 1, 0, 0, 0],
             [0, 0, 0, 0, 1, 0, 0],
             [0, 0, 0, 0, 0, 1, 0],
             [0, 0, 0, 0, 0, 0, 1]
         ])
        #H:量测矩阵/观测矩阵:4*7
        self.kf.H = np.array([
             [1, 0, 0, 0, 0, 0, 0],
             [0, 1, 0, 0, 0, 0, 0],
             [0, 0, 1, 0, 0, 0, 0],
             [0, 0, 0, 1, 0, 0, 0]
         ])
        #R:测量噪声的协方差,即真实值与测量值差的协方差
        self.kf.R[2:,2:] *= 10
        #P:先验估计的协方差
        self.kf.P[4:,4:] *= 1000 #give high uncertainty to the unobservable initial velocities 对不可观测的初始速度给予高度不确定性
        self.kf.P *= 10
        #Q:过程激励噪声的的协方差
        self.kf.Q[-1,-1] *= 0.01
        self.kd.Q[4:,4:] *= 0.01
        #X:观测结果、状态估计
        self.kf.x[:4] = convert_bbox_to_z(bbox)
        #参数的更新
        self.time_since_update = 0
        self.id = KalmanBoxTracker.count
        KalmanBoxTracker.count += 1
        self.history=[]
        self.hits = 0
        self.hit_streak = 0
        self.age = 0
    """
        update(bbox):使用观测到的目标框bbox更新状态更新向量x(状态变量x)
        1.time_since_update = 0
                1.连续预测的次数,每执行predict一次即进行time_since_update+=1。
                2.在连续预测(连续执行predict)的过程中,一旦执行update的话,time_since_update就会被重置为0。
                2.在连续预测(连续执行predict)的过程中,只要连续预测的次数time_since_update大于0的话,
                  就会把hit_streak(连续更新的次数)重置为0,表示连续预测的过程中没有出现过一次更新状态更新向量x(状态变量x)的操作,
                  即连续预测的过程中没有执行过一次update。
        2.history = []      
               清空history列表。
               history列表保存的是单个目标框连续预测的多个结果([x,y,s,r]转换后的[x1,y1,x2,y2]),一旦执行update就会清空history列表。
        3.hits += 1:
                该目标框进行更新的总次数。每执行update一次,便hits+=1。
        4.hit_streak += 1
                1.连续更新的次数,每执行update一次即进行hit_streak+=1。
                2.在连续更新(连续执行update)的过程中,一旦开始连续执行predict两次或以上的情况下,
                  当连续第一次执行predict时,因为time_since_update仍然为0,并不会把hit_streak重置为0,
                  然后才会进行time_since_update+=1;
                  当连续第二次执行predict时,因为time_since_update已经为1,那么便会把hit_streak重置为0,
                  然后继续进行time_since_update+=1。
        5.kf.update(convert_bbox_to_z(bbox))
                convert_bbox_to_z负责将[x1,y1,x2,y2]形式的检测框转为滤波器的状态表示形式[x,y,s,r],那么传入的为kf.update([x,y,s,r])。
                然后根据观测结果修改内部状态x(状态更新向量x)。
                使用的是通过yoloV3得到的“并且和预测框相匹配的”检测框来更新卡尔曼滤波器得到的预测框。
    """
    #使用观测到的目标框更新状态变量
    def update(self,bbox):
        """
           使用观察到的目标框更新状态向量。filterpy.kalman.KalmanFilter.update 会根据观测修改内部状态估计self.kf.x。
           重置self.time_since_update,清空self.history。
           :param bbox:目标框
           :return:
        """
        #重置部分参数
        self.time_since_update = 0
        #清空
        self.history = []
        #hits
        self.hits += 1
        self.hit_streak += 1
        #根据观测结果修改内部状态x
        self.kf.update(convert_bbox_to_z(bbox))
    """
        predict:进行目标框的预测并返回预测的边界框结果
        1.if(kf.x[6] + kf.x[2]) <= 0:
                self.kf.x[6] *= 0.0
                状态更新向量x(状态变量x)为[u,v,s,r,u^,v^,s^]T,那么x[6]为s^,x[2]为s。
                如果x[6]+x[2]<= 0,那么x[6] *= 0.0,即把s^置为0.0。
        2.kf.predict()
                进行目标框的预测。
        3.age += 1
                该目标框进行预测的总次数。每执行predict一次,便age+=1。
        4.if time_since_update > 0:
            hit_streak = 0
          time_since_update += 1
                1.连续预测的次数,每执行predict一次即进行time_since_update+=1。
                2.在连续预测(连续执行predict)的过程中,一旦执行update的话,time_since_update就会被重置为0。
                3.在连续预测(连续执行predict)的过程中,只要连续预测的次数time_since_update大于0的话,
                  就会把hit_streak(连续更新的次数)重置为0,表示连续预测的过程中没有出现过一次更新状态更新向量x(状态变量x)的操作,
                  即连续预测的过程中没有执行过一次update。
                4.在连续更新(连续执行update)的过程中,一旦开始连续执行predict两次或以上的情况下,
                  当连续第一次执行predict时,因为time_since_update仍然为0,并不会把hit_streak重置为0,
                  然后才会进行time_since_update+=1;
                  当连续第二次执行predict时,因为time_since_update已经为1,那么便会把hit_streak重置为0,
                  然后继续进行time_since_update+=1。
        5.history.append(convert_x_to_bbox(kf.x))
                convert_x_to_bbox(kf.x):将目标框所预测的结果从中心面积的形式[x,y,s,r] 转换为 坐标的形式[x1,y1,x2,y2] 的bbox。
                history列表保存的是单个目标框连续预测的多个结果([x,y,s,r]转换后的[x1,y1,x2,y2]),一旦执行update就会清空history列表。
        6.predict 返回值:history[-1]
                把目标框当前该次的预测的结果([x,y,s,r]转换后的[x1,y1,x2,y2])进行返回输出。
    """
    #进行目标框的预测:推进状态变量并返回预测的边界框结果
    def predict(self):
        """
            推进状态向量并返回预测的边界框估计。
            将预测结果追加到self.history。由于 get_state 直接访问 self.kf.x,所以self.history没有用到
            :return:
         """
        #状态变量
        if(self.kf.x[6] + self.kf.x[2]) <= 0:
            self.kf.x[6] *= 0
        # 进行预测
        self.kf.predict()
        #卡尔曼滤波的预测次数
        self.age += 1
        #若过程中未进行更新,则将hit_streak置为0
        if self.time_since_update > 0:
            self.hit_streak=0
        self.time_since_update += 1
        #将预测结果追加到hietory中
        self.history.append(convert_x_to_bbox(self.kf.x))
        return self.history[-1]
    """
        get_state():
            获取当前目标框预测的结果([x,y,s,r]转换后的[x1,y1,x2,y2])。
            return convert_x_to_bbox(kf.x):将候选框从中心面积的形式[x,y,s,r] 转换为 坐标的形式[x1,y1,x2,y2] 的bbox并进行返回输出。
            直接访问 kf.x并进行返回,所以history没有用到。
    """
    #获取到当前的边界框的预测结果
    def get_state(self):
        """
            返回当前边界框估计值
            :return:
         """
        return convert_x_to_bbox(self.kf.x)
目录
相关文章
|
6月前
|
传感器 算法 数据处理
yolo目标检测+目标跟踪+车辆计数+车辆分割+车道线变更检测+速度估计
yolo目标检测+目标跟踪+车辆计数+车辆分割+车道线变更检测+速度估计
|
5月前
|
数据挖掘 数据库
检测未知成分一般用到那些仪器丨技术分析
未知成分检测是确定物质化学组成的过程,涉及样品收集、前处理、选择分析方法(如光谱法、色谱法、质谱法、能谱法等)、样品分析、数据分析解释、验证确认及报告编写。此过程需要专业知识,可寻求专业服务支持。
|
6月前
马尔可夫转换模型研究交通伤亡人数事故时间序列预测
马尔可夫转换模型研究交通伤亡人数事故时间序列预测
【负荷预测】基于灰色理论负荷预测的应用研究(Matlab代码实现)
【负荷预测】基于灰色理论负荷预测的应用研究(Matlab代码实现)
|
传感器 编解码 算法
【航空和卫星图像中检测建筑物】使用gabor特征和概率的城市区域和建筑物检测研究(Matlab代码实现)
【航空和卫星图像中检测建筑物】使用gabor特征和概率的城市区域和建筑物检测研究(Matlab代码实现)
105 0
|
机器学习/深度学习 算法 智慧交通
智慧交通day04-特定目标车辆追踪02:Siamese网络+单样本学习
Siamese network就是“连体的神经网络”,神经网络的“连体”是通过共享权值来实现的,如下图所示。共享权值意味着两边的网络权重矩阵一模一样,甚至可以是同一个网络。
142 0
智慧交通day04-特定目标车辆追踪02:Siamese网络+单样本学习
|
编解码 计算机视觉 智慧交通
智慧交通day04-特定目标车辆追踪03:siamese在目标跟踪中的应用-SiamRPN++(2019)
严格的平移不变性只存在于无填充网络中,如AlexNet。以前基于孪生的网络设计为浅层网络,以满足这一限制。然而,如果所使用的网络被ResNet或MobileNet等现代网络所取代,填充将不可避免地使网络变得更深,从而破坏了严格的平移不变性限制,不能保证物体最后的heatmap集中于中心。
169 0
智慧交通day04-特定目标车辆追踪03:siamese在目标跟踪中的应用-SiamRPN++(2019)
|
智慧交通
智慧交通day02-车流量检测实现06:目标估计模型-卡尔曼滤波
在这里我们主要完成卡尔曼滤波器进行跟踪的相关内容的实现。
108 0
|
机器学习/深度学习 传感器 监控
【航迹识别】基于改进的 Hausdorff 距离的DBSCAN船舶异常行为识别附matlab代码
【航迹识别】基于改进的 Hausdorff 距离的DBSCAN船舶异常行为识别附matlab代码
|
数据可视化 算法 智慧交通
智慧交通day02-车流量检测实现05:卡尔曼滤波器实践(小车模型)
FilterPy是一个实现了各种滤波器的Python模块,它实现著名的卡尔曼滤波和粒子滤波器。我们可以直接调用该库完成卡尔曼滤波器实现。
313 0

热门文章

最新文章