m通过目标形心提取、颜色模型以及边缘提取实现两个相向移动人员交叉遮挡过程的检测和分割matlab仿真

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
简介: m通过目标形心提取、颜色模型以及边缘提取实现两个相向移动人员交叉遮挡过程的检测和分割matlab仿真

1.算法仿真效果
matlab2013b仿真结果如下:

4d3edeb4a1218b255811e9b3d7e0eaa0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
c3db61b92dcab124a209e088599fce3f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
6c4fda06360c51e4fa34d897b83c0512_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
dbd521e80f23e31698a35ebf9142cb46_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   我对这种类型的问题的做了几方面研究,总的归纳来讲又如下几个方面:对于交叉问题,目前所了解的方法,视频必须满足如下几个要求:

   第一:视频的背景需要静止,或者说不能又太大的抖动,否则会导致较大的干扰;

   第二:视频上物体必须又出现物体分开的效果,这样可以提取物体物体的特征,所以你提供的第二个视频,两个人一直重合,这会导致无法识别;

   第三:视频的特征提取方法,如果两个物体颜色相似,那么通过提取颜色是不可取的,如果根据动作来区分,如果两个物体运动一致,那么也不行,这里我们通过提取物体的形心来区分不同的物体,只有当两个物体完全重合的时候,形心才有可能重合;

    第四:物体的分割,采用传统的方框来分,人物轮廓的分割方法在交叉的时候,或者是物体在较远的时候,不太可行。

   本算法是根据物体的特征提取进行的。

物体的形心:

2fa9a791d389be82d1e1eff0f23e1914_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

物体的颜色:
7e17f2d9da992f6817d3c86fc39070e2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   在运动的开始,必须满足不同物体是分开的,这样就可以对每个不同的物体进行特征提取,当出现不同物体交叉的时候,就可以通过之前提取的特征参数进行分割。当时当物体的颜色相似的时候,靠颜色的提取是无法区分物体的,这里,我们主要通过形心来区分物体。

形心跟踪:
%第三级显示,人物形心跟踪效果

    jj=0;
    for j=1:nobjs       
        jj        = jj+1;
        if check_frame>0
           check1 = abs(Xn_ref(nseg,1) - Xn(nseg,1));
           check2 = abs(Xn_ref(nseg,1) - Xn(nseg,2));   
        end
        %为了计算精度,将形心坐标的差值的平均作为预测增量 
        if nobjs == 2
             if check1 >= check2 
                 plot(Xn(nseg,1),Yn(nseg,1),'g*');hold on
                 plot(Xn(nseg,2),Yn(nseg,2),'r*');hold on
             else
                 plot(Xn(nseg,1),Yn(nseg,1),'r*');hold on
                 plot(Xn(nseg,2),Yn(nseg,2),'g*');hold on 
             end
        end
        if nobjs == 1
           plot(Xn(nseg,1),Yn(nseg,1),'g*');hold on
           plot(Xn(nseg,2),Yn(nseg,2),'r*');hold on               
        end              
    end


3.MATLAB核心程序

%第二级显示,人体轮廓
%第二级显示,人体轮廓
        jj=0;
        for j=1:nobjs        
            rc=[min(B{j}(:,2)) min(B{j}(:,1)) max(B{j}(:,2))-min(B{j}(:,2)) max(B{j}(:,1))-min(B{j}(:,1))];
            [l_x l_y] = find(L==j);%计算坐标
            cx        = mean(l_x);
            cy        = mean(l_y);
            Area      = size(l_x,1);        
            jj        = jj+1;
 
            if check_frame>0
               check1(nseg) = abs(Xn_ref(nseg,1) - Xn(nseg,1));
               check2(nseg) = abs(Xn_ref(nseg,1) - Xn(nseg,2));   
            end
            %为了计算精度,将形心坐标的差值的平均作为预测增量 
            if nobjs == 2
                 if check1 >= check2
                     if jj == 1
                         figure(1);
                         plot(B{j}(:,2),B{j}(:,1),'g','LineWidth',1);hold on  
                     else
                         figure(1);
                         plot(B{j}(:,2),B{j}(:,1),'r','LineWidth',1);hold on 
                     end   
                 else
                     if jj == 1
                         figure(1);
                         plot(B{j}(:,2),B{j}(:,1),'r','LineWidth',1);hold on  
                     else
                         figure(1);
                         plot(B{j}(:,2),B{j}(:,1),'g','LineWidth',1);hold on 
                     end   
                 end
            end
            if nobjs == 1
                 plot(B{j}(:,2),B{j}(:,1),'y','LineWidth',1);hold on                 
            end  
        end
相关文章
|
1天前
|
机器学习/深度学习 算法
【MATLAB】基于EMD-PCA-LSTM的回归预测模型
【MATLAB】基于EMD-PCA-LSTM的回归预测模型
12 0
【MATLAB】基于EMD-PCA-LSTM的回归预测模型
|
3天前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络模型的鱼眼镜头中人员检测算法matlab仿真
该内容是一个关于基于YOLOv2的鱼眼镜头人员检测算法的介绍。展示了算法运行的三张效果图,使用的是matlab2022a软件。YOLOv2模型结合鱼眼镜头畸变校正技术,对鱼眼图像中的人员进行准确检测。算法流程包括图像预处理、网络前向传播、边界框预测与分类及后处理。核心程序段加载预训练的YOLOv2检测器,遍历并处理图像,检测到的目标用矩形标注显示。
|
7天前
|
数据采集 Python
matlab疲劳驾驶检测项目,Python高级面试framework
matlab疲劳驾驶检测项目,Python高级面试framework
|
10天前
|
算法 计算机视觉 异构计算
基于肤色模型的人脸识别FPGA实现,包含tb测试文件和MATLAB辅助验证
这是一个关于肤色检测算法的摘要:使用MATLAB 2022a和Vivado 2019.2进行测试和仿真,涉及图像预处理、RGB到YCbCr转换、肤色模型(基于阈值或概率)以及人脸检测。核心程序展示了如何读取图像数据并输入到FPGA处理,通过`tops`模块进行中值滤波、颜色空间转换及人脸检测,最终结果输出到"face.txt"。
|
10天前
|
数据安全/隐私保护
matlab程序, 脉冲波合成与提取,滑冲效应、方向性效应,自定义脉冲模型,提取脉冲波
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
10天前
|
算法 调度
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
|
10天前
|
算法 调度
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
|
10天前
|
算法 调度 SoC
电动汽车充放电V2G模型(Matlab代码)
电动汽车充放电V2G模型(Matlab代码)
|
10天前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
10天前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度