lorenz混沌序列输出的matlab仿真

简介: lorenz混沌序列输出的matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

28ac851145b7e14cde0da24dae4f32b3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   1963年,Lorenz发现了第一个混沌吸引子——Lorenz系统,从此揭开了混沌研究的序幕,该系统也称为Lorenz混沌系统。从此,人们不断发现新的混沌奇异性,不断地加深与统一对混沌的理解。Lorenz系统是数值试验中最早发现的呈现混沌运动的耗散系统,其状态方程为:

1698fc690f0e013f3e40b6094bae9d0f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

 在a=10,b=8/3,c=28时呈现混沌态。该系统的一个简单物理实现是流体在下方加热上方冷却的热对流管中的环流,此时,x1是流体速度,x2和x3分别为水平和垂直的温度差,P与流体的Prandtl数成比例,b是与空间相关的常数,R与流体的Rayleigh数成比例 。

Lorenz系统和陈氏混沌系统

   1999年,美国休斯顿大学陈关荣教授发现了一个新的混沌吸引子——Chen系统,即陈氏混沌系统,它与Lorenz系统类似,但不拓扑等价而且更复杂。

   在这种意义下,他们是对偶的两个动力系统。由于陈氏混沌系统比Lorenz系统具有更复杂的拓扑结构和动力学行为,这一方面使得它在信息加密和保密通信等领域有着更广阔的应用前景,另一方面使得陈氏混沌系统很难控制,许多对Lorenz系统轻而易举的控制方法对陈氏混沌系统却不太理想甚至无效。尽管如此,对该系统的控制已有不少有效的控制方法,如:逆最优控制、识别控制、数字控制、模糊控制、脉冲控制、自适应控制等,随着研究的不断深入,在实际应用中必然要追求实施控制的有效性、代价大小和难易程度。

3.MATLAB核心程序

    K1=p*(y(i)-x(i));
    L1=r*x(i)-y(i)-x(i)*z(i);
    M1=-b*z(i)+x(i)*y(i);
    
    K2=p*((y(i)+h/2*L1)-(x(i)+h/2*K1));
    L2=r*(x(i)+h/2*K1)-(y(i)+h/2*L1)-(x(i)+h/2*K1)*(z(i)+h/2*M1);
    M2=-b*(z(i)+h/2*M1)+(x(i)+h/2*K1)*(y(i)+h/2*L1);
    
    K3=p*((y(i)+h/2*L2)-(x(i)+h/2*K1));
    L3=r*(x(i)+h/2*K1)-(y(i)+h/2*L2)-(x(i)+h/2*K1)*(z(i)+h/2*M2);
    M3=-b*(z(i)+h/2*M1)+(x(i)+h/2*K1)*(y(i)+h/2*L2);
    
    K4=p*((y(i)+h*L3)-(x(i)+h*K3));
    L4=r*(x(i)+h*K3)-(y(i)+h*L3)-(x(i)+h*K3)*(z(i)+h*M3);
    M4=-b*(z(i)+h*M3)+(x(i)+h*K3)*(y(i)+h*L3);
    
    x(i+1)=x(i)+h/6*(K1+2*K2+2*K3+K4);
    y(i+1)=y(i)+h/6*(L1+2*L2+2*L3+L4);
    z(i+1)=z(i)+h/6*(M1+2*M2+2*M3+M4);
end
 
figure(1);
subplot(221);
plot3(x,y,z);
xlabel('x(t)');
ylabel('y(t)');
zlabel('z(t)');
title('Lorenz吸引子图');
grid on;
view([-72,40]);
 
subplot(222);
plot(x);
xlabel('t');
ylabel('x(t)');
title('Lorenz X相时间序列');
grid on;
 
subplot(223);
plot(y);
xlabel('t');
ylabel('y(t)');
title('Lorenz Y相时间序列');
grid on;
 
subplot(224);
plot(z);
xlabel('t');
ylabel('z(t)');
title('Lorenz Z相时间序列');
grid on;
相关文章
|
6天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
7天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
3天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
5天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
4天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
150 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
121 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)