面试官:你了解 QPS、TPS、RT、吞吐量 这些高并发性能指标吗?

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 面试官:你了解 QPS、TPS、RT、吞吐量 这些高并发性能指标吗?


来源:blog.csdn.net/u012562943/

article/details/103252375

image.png


一、QPS,每秒查询

QPS:Queries Per Second意思是“每秒查询率”,是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准。互联网中,作为域名系统服务器的机器的性能经常用每秒查询率来衡量。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

二、TPS,每秒事务

TPS:是TransactionsPerSecond的缩写,也就是事务数/秒。它是软件测试结果的测量单位。一个事务是指一个客户机向服务器发送请求然后服务器做出反应的过程。客户机在发送请求时开始计时,收到服务器响应后结束计时,以此来计算使用的时间和完成的事务个数。

QPS vs TPS:QPS基本类似于TPS,但是不同的是,对于一个页面的一次访问,形成一个TPS;但一次页面请求,可能产生多次对服务器的请求,服务器对这些请求,就可计入“QPS”之中。如,访问一个页面会请求服务器2次,一次访问,产生一个“T”,产生2个“Q”。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

三、RT,响应时间

响应时间:执行一个请求从开始到最后收到响应数据所花费的总体时间,即从客户端发起请求到收到服务器响应结果的时间。响应时间RT(Response-time),是一个系统最重要的指标之一,它的数值大小直接反应了系统的快慢。

四、并发数

并发数是指系统同时能处理的请求数量,这个也是反应了系统的负载能力。

五、吞吐量

系统的吞吐量(承压能力)与request对CPU的消耗、外部接口、IO等等紧密关联。单个request 对CPU消耗越高,外部系统接口、IO速度越慢,系统吞吐能力越低,反之越高。系统吞吐量几个重要参数:QPS(TPS)、并发数、响应时间。

  • QPS(TPS) :(Query Per Second)每秒钟request/事务 数量
  • 并发数 :系统同时处理的request/事务数
  • 响应时间 :一般取平均响应时间

理解了上面三个要素的意义之后,就能推算出它们之间的关系:

  • QPS(TPS)= 并发数/平均响应时间
  • 并发数 = QPS*平均响应时间

六、实际举例

我们通过一个实例来把上面几个概念串起来理解。按二八定律来看,如果每天 80% 的访问集中在 20% 的时间里,这 20% 时间就叫做峰值时间。

  • 公式:( 总PV数 * 80% ) / ( 每天秒数 * 20% ) = 峰值时间每秒请求数(QPS)
  • 机器:峰值时间每秒QPS / 单台机器的QPS = 需要的机器

1、每天300w PV 的在单台机器上,这台机器需要多少QPS?

( 3000000 * 0.8 ) / (86400 * 0.2 ) = 139 (QPS)

2、如果一台机器的QPS是58,需要几台机器来支持?

139 / 58 = 3

七、最佳线程数、QPS、RT

1、单线程QPS公式:QPS=1000ms/RT

对同一个系统而言,支持的线程数越多,QPS越高。假设一个RT是80ms,则可以很容易的计算出QPS,QPS = 1000/80 = 12.5

多线程场景,如果把服务端的线程数提升到2,那么整个系统的QPS则为 2*(1000/80) = 25, 可见QPS随着线程的增加而线性增长,那QPS上不去就加线程呗,听起来很有道理,公司也说的通,但是往往现实并非如此。

2、QPS和RT的真实关系

我们想象的QPS、RT关系如下

image.png

实际的QPS、RT关系如下

image.png

3、最佳线程数量

刚好消耗完服务器的瓶颈资源的临界线程数,公式如下

最佳线程数量=((线程等待时间+线程cpu时间)/线程cpu时间)* cpu数量

特性:

  • 在达到最佳线程数的时候,线程数量继续递增,则QPS不变,而响应时间变长,持续递增线程数量,则QPS开始下降。
  • 每个系统都有其最佳线程数量,但是不同状态下,最佳线程数量是会变化的。
  • 瓶颈资源可以是CPU,可以是内存,可以是锁资源,IO资源:超过最佳线程数-导致资源的竞争,超过最佳线程数-响应时间递增。



相关文章
|
7月前
|
缓存 NoSQL 关系型数据库
|
7月前
|
消息中间件 安全 NoSQL
2023春招面试专题:高并发解决方案(三)
2023春招面试专题:高并发解决方案
124 0
|
7月前
|
缓存 NoSQL 数据库
2023春招面试专题:高并发解决方案
2023春招面试专题:高并发解决方案
|
1月前
|
架构师 Java 测试技术
一文搞透高并发指标(QPS、TPS、吞吐量等)
详解高并发场景下的QPS、TPS、RT及吞吐量等关键性能指标,帮助理解系统性能评估的核心概念。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
一文搞透高并发指标(QPS、TPS、吞吐量等)
|
1月前
|
消息中间件 存储 缓存
QPS多少,才算高并发 ?
本文详解高并发概念及 QPS 标准,大厂面试高频点,建议掌握收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
QPS多少,才算高并发 ?
|
2月前
|
缓存 算法 架构师
京东面试:如何设计600Wqps高并发ID?如何解决时钟回拨问题?
资深架构师尼恩在其读者交流群中分享了关于分布式ID系统的设计与实现,特别是针对高并发场景下的解决方案。他强调了分布式ID系统在高并发核心组件中的重要性,并详细介绍了百度的UidGenerator,这是一个基于Snowflake算法改进的Java实现,旨在解决分布式系统中的唯一ID生成问题。UidGenerator通过自定义workerId位数和初始化策略,支持虚拟化环境下的实例自动重启和漂移,其单机QPS可达600万。此外尼恩的技术分享不仅有助于提升面试表现,还能帮助开发者在实际项目中应对高并发挑战。
京东面试:如何设计600Wqps高并发ID?如何解决时钟回拨问题?
|
4月前
|
算法 关系型数据库 MySQL
技术分享:600W QPS高并发ID设计与时钟回拨解决方案
【8月更文挑战第26天】在大型分布式系统中,高并发ID生成和时钟同步是两个至关重要的技术挑战。随着业务量的快速增长,如美团点评的金融、支付、餐饮等业务场景,每秒需要处理数百万级别的请求,这就对ID的生成效率和唯一性提出了极高要求。同时,时钟回拨问题也时常困扰着系统管理员,影响数据一致性和系统稳定性。本文将围绕这两个主题,分享一些工作学习中的技术干货。
68 1
|
5月前
|
监控 网络协议 Java
Java面试题:解释Java NIO与BIO的区别,以及NIO的优势和应用场景。如何在高并发应用中实现NIO?
Java面试题:解释Java NIO与BIO的区别,以及NIO的优势和应用场景。如何在高并发应用中实现NIO?
83 0
|
5月前
|
设计模式 安全 NoSQL
Java面试题:设计一个线程安全的单例模式,并解释其内存占用和垃圾回收机制;使用生产者消费者模式实现一个并发安全的队列;设计一个支持高并发的分布式锁
Java面试题:设计一个线程安全的单例模式,并解释其内存占用和垃圾回收机制;使用生产者消费者模式实现一个并发安全的队列;设计一个支持高并发的分布式锁
74 0
|
5月前
|
设计模式 安全 Java
Java面试题:如何实现一个线程安全的单例模式,并确保其在高并发环境下的内存管理效率?如何使用CyclicBarrier来实现一个多阶段的数据处理任务,确保所有阶段的数据一致性?
Java面试题:如何实现一个线程安全的单例模式,并确保其在高并发环境下的内存管理效率?如何使用CyclicBarrier来实现一个多阶段的数据处理任务,确保所有阶段的数据一致性?
75 0
下一篇
DataWorks