基于GOA蚱蜢优化算法的KNN分类器最优特征选择matlab仿真

简介: 基于GOA蚱蜢优化算法的KNN分类器最优特征选择matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

499c98e17dd50844b3ac41b295e9a333_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
bd8cd55c1bce9d1dfa1e05b2bba9b94c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
377a425703de6446e14f2718f6b3cc29_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   蝗 虫 优 化 算 法 ( Grasshopper Optimization Algorithm, GOA) 是一种新型的元启发式算法,由 Mirjalili 等人于2017年提出。该算法受幼虫和成年蝗虫大范围移动与寻找食物源的聚集行为启发,具有操作参数少,公式简单的特点。针对基准测试函数优化问题的实验结果表明,GOA的收敛性优于粒子群算法。

2.1 GOA蚱蜢优化
蝗虫优化算法的基本实现步骤
1.初始化最大迭代次数N,种群大小n,变量范围,控制参数的最大值最小值等参数。
2.初始化种群位置,计算初始的个体适应度,并得到最优蝗虫位置与适应度。
3.开始循环(K=1):使用公式(2)、(3)更新参数。使用公式(1)更新蝗虫个体的位置,并检查是否越界。
4.计算每个蝗虫的适应度,更新到目前为止找到的最优食物源(即最优个体位置与适应度)。
5.重复执行步骤3和4,直到满足最大迭代次数,结束循环(K=N)。
6.返回最优的参数取值和最优的适应度值。
1 蝗虫群的位置移动

c8988fac53538c1ce2a76e0135cc6575_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    式中,d dd是表示变量维度,i , j i, ji,j表示蝗虫个体编号,u b d 、 l b d ub_d、lb_dubd、lbd分别表示变量的上限与下限,T d T_dT d表示最优的蝗虫个体位置,d i j d_{ij}dij是两个蝗虫个体之间的欧式距离,c是控制参数,用于平衡算法的全局探索和局部开发。函数s ( ) s( )s()表示两个蝗虫个体之间的交互力影响。

控制参数 c cc 一般设计为线性递减,使得算法具有动态与不确定搜索能力:

image.png

    式中,c m a x 、 c m i n c_{max}、c_{min}c max 、cmin分别表示递减区间的最大值与最小值,t tt表示当前的迭代次数,T m a x T_{max}T max表示最大迭代次数。

2 蝗虫个体之间的相互影响

14f91cbad368f847e31717d714d049f6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.2 KNN分类器

    何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:分析一个人时,我们不妨观察和他最亲密的几个人。同理的,在判定一个未知事物时,可以观察离它最近的几个样本,这就是KNN(k最近邻)的方法。简单来说,KNN可以看成:有那么一堆你已经知道分类的数据,然后当一个新数据进入的时候,就开始跟训练数据里的每个点求距离,然后挑出离这个数据最近的K个点,看看这K个点属于什么类型,然后用少数服从多数的原则,给新数据归类。

    k值通常是采用交叉检验来确定(以k=1为基准),交叉验证(将样本数据按照一定比例,拆分出训练用的数据和验证用的数据,比如6:4拆分出部分训练数据和验证数据),从选取一个较小的K值开始,不断增加K的值,然后计算验证集合的方差,最终找到一个比较合适的K值。

    增大k的时候,一般错误率会先降低,因为有周围更多的样本可以借鉴了,分类效果会变好。但注意,当K值更大的时候,错误率会更高。这也很好理解,比如说你一共就35个样本,当你K增大到30的时候,KNN基本上就没意义了。

   所以选择K点的时候可以选择一个较大的临界K点,当它继续增大或减小的时候,错误率都会上升。

3.MATLAB核心程序

GrassHopperFitness = zeros(1,N);
 
fitness_history=zeros(N,Max_iter);
position_history=zeros(N,Max_iter,dim);
Convergence_curve=zeros(1,Max_iter);
Trajectories=zeros(N,Max_iter);
 
 
cMax=2.079;
cMin=0.00004;
........................................................................
 
[sorted_fitness,sorted_indexes]=sort(GrassHopperFitness);
 
for newindex=1:N
    Sorted_grasshopper(newindex,:)=GrassHopperPositions(sorted_indexes(newindex),:);
end
 
TargetPosition=Sorted_grasshopper(1,:);
TargetFitness=sorted_fitness(1);
 
 
l=2; 
while l<Max_iter+1
    
    c=cMax-l*((cMax-cMin)/Max_iter); 
    
    for i=1:size(GrassHopperPositions,1)
        temp= GrassHopperPositions';
        for k=1:2:dim
            S_i=zeros(2,1);
            for j=1:N
                if i~=j
                    Dist=distance(temp(k:k+1,j), temp(k:k+1,i)); 
                    
                    r_ij_vec=(temp(k:k+1,j)-temp(k:k+1,i))/(Dist+eps);
                    xj_xi=2+rem(Dist,2);
                    
                    s_ij=((ub(k:k+1) - lb(k:k+1))*c/2)*S_func(xj_xi).*r_ij_vec; 
                    S_i=S_i+s_ij;
                end
            end
            S_i_total(k:k+1, :) = S_i;
            
        end
...........................................................................
        fitness_history(i,l)=GrassHopperFitness(1,i);
        position_history(i,l,:)=GrassHopperPositions(i,:);
        
        Trajectories(:,l)=GrassHopperPositions(:,1);
        if GrassHopperFitness(1,i)<TargetFitness
            TargetPosition=GrassHopperPositions(i,:);
            TargetFitness=GrassHopperFitness(1,i);
        end
    end
        
    Convergence_curve(l)=TargetFitness;
    disp(['In GOA iteration #', num2str(l), ' , target''s objective = ', num2str(TargetFitness)])
    
    l = l + 1;
end
if (flag==1)
    TargetPosition = TargetPosition(1:dim-1);
end
相关文章
|
9天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
9天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
105 68
|
18天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
17天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
16天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
262 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
155 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
128 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)