m基于matlab的卷积编码维特比译码误码率仿真

简介: m基于matlab的卷积编码维特比译码误码率仿真

1.算法仿真效果
matlab2022a仿真结果如下:

8435e3fe56600b6f054971d5e08e34f9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

    随着现代通信的发展,人们对信息传输的可靠性和有效性的要求也越来越高。维特比译码算法被广泛的应用,因此如何提高维特比译码器的性能,降低译码器的功耗和面积是个重要的问题。卷积码是Elias等人在1955年提出的,是一种非常有前途的编码方法,尤其是在其最大似然译码算法-Viterbi译码算法提出之后,卷积码在通信系统中得到了极为广泛的应用。其中约束长度K=7,码率为1/2和1/3的卷积码己经成为商业卫星通信系统中的标准编码方法。在“航海家“以及“先驱者”等太空探测器上也都采用了卷积码作为其差错控制编码方法。在移动通信领域,GMS采用约束长度K=5,码率为1/2的卷积码;在IS-95中,上行链路中采用的是约束长度K=9,码率为1/3的卷积码,在下行链路中采用的是约束长度K=9,码率为1/2的卷积码。特别在第三代移动通信标准中也是以卷积码以及与卷积码相关的编码方法作为差错控制编码方案的。

2.1卷积码编码器

fa0c7407b3602c07fdd5f0b8c5259258_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    一个输入移位寄存器(分为N段,每段k位);n个模2加法器;一个输出数据选择器(n选一)。某一时刻,输入到编码器的k个信息元组成一个信息组,相应的输出序列是由n个码元组成的码段。这里,称N为编码约束度,说明编码过程中互相约束的码段个数。令N=m+1,则m称为编码存储,它表示输入信息组在编码器中需存储的单位时间(有时为了简化,编码器中只用m段的输入移位寄存器)。称Nn为编码约束长度,说明编码过程中互相约束的码元个数,如m=2,n=2,则Nn=6。所以m或N以及Nn都是表示卷积码编码器复杂性的重要参数。 

编码电路:

4a17247d435032f30aeca0c439dd2095_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.2维特比译码

    卷积编码的过程就是编码器状态沿着时间轴一级一级跳转的过程。维特比译码算法则是在网格图上搜索最可能的状态跳转路径的过程。维特比译码算法先读取t时刻的所有状态的幸存路径度量,再根据t+1时刻的输入,算出跳转路径的度量:根据这两类度量算出t+1时刻到状态S的所有路径的度量,比较选出一个具有较小路径度量的路径作为t+l时刻状态S的幸存路径。这样对每个状态都得到一个幸存路径,根据这些幸存路径和最终编码器所处的状态就可以得到编码器的状态转移路径即译码结果。维特比译码结果的可信度取决于幸存路径的深度和它的路径度量值。幸存路径越深、路径度量值越高,那么译出信息的可信度就越高。在译码过程中有些路径被抛弃了,有些路径被保留了下来。被以为是幸存路径的,也可能会在后面的搜索过程中被抛弃掉。这样随着搜索的深度不断加深,最终正确的路径将会被保留下来,所有的幸存路径都将收敛于一条路径。由上面的描述可知,维特比译码器至少需要完成以下操作:

·t时刻幸存路径度量的存储。

·t时刻到t+l时刻的分支度量的生成。

·t+1时刻幸存路径度量的生成和选择。

    维特比译码器的基本结构正是按照这些操作划分的。前面说过,网格图是理解维特比算法的核心。其核心思想是依次在每个时刻对网格图相应列的每个点(对应于编码器该时刻的状态),按照最大似然准则比较所有以它为终点的的路径,只保留一条具有最大似然值的路径,称之为幸存路径,而将其他路径堵死弃之不用,故到了下一时刻只要对幸存路径延伸出来的路径继续比较即可。即接收一段,计算、比较一段保留下幸存路径,如此反复直到最后。

023c2196c8b89ee5d60924b93ce93913_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  考虑Viterbi译码,假设卷积码的编码存储m只是个位数。在每一帧被接收时,译码器都必须更新状态,对于每一个状态,都有2k0条路径要估算。于是,译码器的计算量大致与成正比,等于。这是能够用此方式解码的码的约束长度的上限。这个限的大小取决于要求达到的比特率和技术水平,但是通常情况下,约束度N取7~9,这些值是目前典型的最大值。更长的约束长度也意味着功能更为强大的码,但只能在合理的码率下用其他技术来译码,例如序贯译码。

3.MATLAB核心程序

%采用BPSK调制
EsN0dB=EbN0dB-10*log10(R);
N0=10.^(-EsN0dB/10);
sigma=sqrt(N0);
plot_EbNo =-1:1:6;
Plot_Pe = [];
Plot_Pe2= [];
x_num=100000;
G=[1 1 1;1 0 1];
 
for k=1:length(N0)
    k
       x = bin_generator(x_num);
       x(find(x < 0)) = 0;
       x(find(x > 0)) = 1;
       
       %卷码编码
       s=encode(G,1,x);
       %BPSK经过AWGN信道
       r=(2*s-1)+sigma(k)*randn(1,length(s));
       r(2:10004)=0.25*r(1:10003)+0.75*r(2:10004);
       r(find(r < 0)) = 0;
       r(find(r > 0)) = 1;
       %译码
       dd=viterbi(G,1,r);
       r=(2*x-1)+sigma(k)*randn(1,length(x));
       r(2:10004)=0.25*r(1:10003)+0.75*r(2:10004);
       r(find(r < 0)) = 0;
       r(find(r > 0)) = 1;
       
       %误码计数
       Pe  = length(find(x - dd))/x_num;
       Pe2 = length(find(x - r))/x_num;
       Plot_Pe = [Plot_Pe Pe];
       Plot_Pe2= [Plot_Pe2 Pe2];
end
 
semilogy(plot_EbNo,Plot_Pe,'-bs',...
    'LineWidth',2,...
    'MarkerSize',8,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.0,0.9,0.0])
hold on
semilogy(plot_EbNo,Plot_Pe2,'-bo',...
    'LineWidth',2,...
    'MarkerSize',8,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0])
grid;
xlabel('Eb/No (dB)')
ylabel('BER')
legend('通过维特比译码','不加编译码');
相关文章
|
4天前
|
机器学习/深度学习 算法 机器人
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
129 85
|
3天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
4天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
3天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
4天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
2天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
1天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
252 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
149 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
119 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码