【LSSVM时序预测】基于麻雀算法优化最小二乘支持向量机SSA-LSSVM实现交通流时序数据预测附Matlab代码

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 【LSSVM时序预测】基于麻雀算法优化最小二乘支持向量机SSA-LSSVM实现交通流时序数据预测附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

短时交通流预测是实现智能交通控制与管理,交通流状态辨识和实时交通流诱导的前提及关键,也是智能化交通管理的客观需要.到目前为止,它的研究结果都不尽如人意.现有的以精确数学模型为基础的传统预测方法存在计算复杂,运算时间长,需要大量历史数据,预测精度不高等缺点.因此通过研究新型人工智能方法改进短期交通流预测具有一定的现实意义.本文在对现有短期交通流预测模型对比分析及交通流特性研究分析基础上,采用最小二乘支持向量机方法进行短期交通流预测模型,取得较好的效果. 支持向量机是一种新的机器学习算法,建立在统计学习理论的基础上,采用结构风险最小化原则,具有预测能力强,全局最优化以及收敛速度快等特点,相比较以经验风险化为基础的神经网络学习算法有更好的理论依据和更好的泛化性能.对于支持向量机模型而言,其算法相对简单,运算时间短,预测精度较高,比较适用于交通流预测研究,特别是在引入最小二乘理论后,计算简化为求解一个线性方程组,同时精度也能得到保证. 在最小二乘支持向量机理论的基础上,利用类似"滑动窗口"的概念,提出了一种新的在线算法,更新计算矩阵,并且通过"剪枝",去除对模型影响较小的支持向量,并通过MATLAB2014仿真实验验证了其SSA-LSSVM算法有效性,在一定条件下,适用于短期交通流的预测.

⛄ 部分代码

function [Best_pos, Best_score, curve] = SSA(pop, Max_iter, lb, ub, dim, fobj)


%%  参数设置      

ST = 0.8;                    % 预警值

PD = 0.2;                    % 发现者的比列,剩下的是加入者

PDNumber = pop * PD;         % 发现者数量

SDNumber = pop - pop * PD;   % 意识到有危险麻雀数量


%%  判断优化参数个数

if(max(size(ub)) == 1)

  ub = ub .* ones(1, dim);

  lb = lb .* ones(1, dim);  

end


%%  种群初始化

pop_lsat = initialization(pop, dim, ub, lb);

pop_new  = pop_lsat;


%%  计算初始适应度值

fitness = zeros(1, pop);

for i = 1 : pop

  fitness(i) =  fobj(pop_new(i, :));

end


%%  得到全局最优适应度值

[fitness, index]= sort(fitness);

GBestF = fitness(1);


%%  得到全局最优种群

for i = 1 : pop

   pop_new(i, :) = pop_lsat(index(i), :);

end


GBestX = pop_new(1, :);

X_new  = pop_new;


%%  优化算法

for i = 1: Max_iter


  BestF = fitness(1);

  R2 = rand(1);


  for j = 1 : PDNumber

     if(R2 < ST)

         X_new(j, :) = pop_new(j, :) .* exp(-j / (rand(1) * Max_iter));

     else

         X_new(j, :) = pop_new(j, :) + randn() * ones(1, dim);

     end    

  end

 

  for j = PDNumber + 1 : pop

       if(j > (pop - PDNumber) / 2 + PDNumber)

         X_new(j, :) = randn() .* exp((pop_new(end, :) - pop_new(j, :)) / j^2);

       else

         A = ones(1, dim);

         for a = 1 : dim

             if(rand() > 0.5)

               A(a) = -1;

             end

         end

         AA = A' / (A * A');    

         X_new(j, :) = pop_new(1, :) + abs(pop_new(j, :) - pop_new(1, :)) .* AA';

      end

  end

 

  Temp = randperm(pop);

  SDchooseIndex = Temp(1 : SDNumber);

 

  for j = 1 : SDNumber

      if(fitness(SDchooseIndex(j)) > BestF)

          X_new(SDchooseIndex(j), :) = pop_new(1, :) + randn() .* abs(pop_new(SDchooseIndex(j), :) - pop_new(1, :));

      elseif(fitness(SDchooseIndex(j)) == BestF)

          K = 2 * rand() -1;

          X_new(SDchooseIndex(j), :) = pop_new(SDchooseIndex(j), :) + K .* (abs(pop_new(SDchooseIndex(j), :) - ...

              pop_new(end, :)) ./ (fitness(SDchooseIndex(j)) - fitness(end) + 10^-8));

      end

  end


%%  边界控制

  for j = 1 : pop

      for a = 1 : dim

          if(X_new(j, a) > ub(a))

             X_new(j, a) = ub(a);

          end

          if(X_new(j, a) < lb(a))

             X_new(j, a) = lb(a);

          end

      end

  end


%%  获取适应度值

  for j = 1 : pop

   fitness_new(j) = fobj(X_new(j, :));

  end

 

%%  获取最优种群

  for j = 1 : pop

      if(fitness_new(j) < GBestF)

         GBestF = fitness_new(j);

         GBestX = X_new(j, :);

      end

  end

 

%%  更新种群和适应度值

  pop_new = X_new;

  fitness = fitness_new;


%%  更新种群

  [fitness, index] = sort(fitness);

  for j = 1 : pop

     pop_new(j, :) = pop_new(index(j), :);

  end


%%  得到优化曲线

  curve(i) = GBestF;

  avcurve(i) = sum(curve) / length(curve);

end


%%  得到最优值

Best_pos = GBestX;

Best_score = curve(end);

⛄ 运行结果

⛄ 参考文献

[1] 刘林. 基于LSSVM的短期交通流预测研究与应用[D]. 西南交通大学, 2011.

[2] 刘云, 易松. 基于双参数最小二乘支持向量机(TPA-LSSVM)的风电时间序列预测模型的优化研究[J]. 北京化工大学学报:自然科学版, 2019, 46(2):6.

[3] 王帝, 李治, 汪勇,等. 基于改进最小二乘支持向量机的一次风机状态预测方法研究[J]. 动力工程学报, 2023, 43(1):74-82.

[4] 李忠, 陈媛, 何怡刚. 一种基于麻雀搜索和最小二乘支持向量机的电池健康状态估计与剩余寿命预测方法:, CN112485692A[P]. 2021.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
10天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
23天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
159 80
|
11天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
11天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
9天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
8天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
17天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
19天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
16天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
20天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。

热门文章

最新文章