m基于CNN卷积神经网络和GEI步态能量图的步态识别算法MATLAB仿真

简介: m基于CNN卷积神经网络和GEI步态能量图的步态识别算法MATLAB仿真

1.算法描述

     步态识别是一种新兴的生物特征识别技术,旨在通过人们走路的姿态进行身份识别,与其他的生物识别技术相比,步态识别具有非接触远距离和不容易伪装的优点。在智能视频监控领域,比图像识别更具优势。步态是指人们行走时的方式,这是一种复杂的行为特征。罪犯或许会给自己化装,不让自己身上的哪怕一根毛发掉在作案现场,但有样东西他们是很难控制的,这就是走路的姿势。英国南安普敦大学电子与计算机系的马克·尼克松教授的研究显示,人人都有截然不同的走路姿势,因为人们在肌肉的力量、肌腱和骨骼长度、骨骼密度、视觉的灵敏程度、协调能力、经历、体重、重心、肌肉或骨骼受损的程度、生理条件以及个人走路的“风格”上都存在细微差异。对一个人来说,要伪装走路姿势非常困难,不管罪犯是否带着面具自然地走向银行出纳员还是从犯罪现场逃跑,他们的步态就可以让他们露出马脚。

   人类自身很善于进行步态识别,在一定距离之外都有经验能够根据人的步态辨别出熟悉的人。步态识别的输入是一段行走的视频图像序列,因此其数据采集与面像识别类似,具有非侵犯性和可接受性。但是,由于序列图像的数据量较大,因此步态识别的计算复杂性比较高,处理起来也比较困难。尽管生物力学中对于步态进行了大量的研究工作,基于步态的身份鉴别的研究工作却是刚刚开始。步态识别主要提取的特征是人体每个关节的运动。到目前为止,还没有商业化的基于步态的身份鉴别系统。

————————————————

   卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)” 。

对卷积神经网络的研究始于二十世纪80至90年代,时间延迟网络和LeNet-5是最早出现的卷积神经网络 [4] ;在二十一世纪后,随着深度学习理论的提出和数值计算设备的改进,卷积神经网络得到了快速发展,并被应用于计算机视觉、自然语言处理等领域 。
卷积神经网络仿造生物的视知觉(visual perception)机制构建,可以进行监督学习和非监督学习,其隐含层内的卷积核参数共享和层间连接的稀疏性使得卷积神经网络能够以较小的计算量对格点化(grid-like topology)特征,例如像素和音频进行学习、有稳定的效果且对数据没有额外的特征工程(feature engineering)要求 。

 采用监督方式训练的一种面向两维形状不变性识别的特定多层感知机。

卷积层的结构如下所示:

c52e47c7ed0017694603f84c33b20695_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.仿真效果预览
matlab2022a仿真结果如下:

    与其他生物识别相比,步态识别具有许多优点,如远距离、非接触等。为了获得良好的识别效果,虹膜识别需要目标在30厘米以内;人脸识别需要目标在3米以内;步态识别需要目标远达50m。不同的体型、头部形状、肌肉骨骼特征、运动神经敏感性、行走姿势等特征决定了步态具有更好的辨别能力。通过复杂的算法设计和海量数据训练,机器可以更好地识别这些细节。首先基于CASIA A数据库来模拟算法的性能,然后基于真实场景来模拟算法性能。CASIA A数据库是2005年1月在室内收集的最大步态数据集。视频大小为320×240,帧数为25fps。数据集中有20名行人。每个人收集了12个序列,包括4个0度序列、4个45度序列和4个90度序   列。因此,序列的总数为240。图显示了CASIA A中的部分步态数据。

87dfaca4f2776890c0b5492b08378060_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
0708ec5eea09645390035dcee9fdaee4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
fb98e934eca8afcbcf9e3a2d0d1578ef_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

digitDatasetPath = ['步态能量图0t0\'];
imds = imageDatastore(digitDatasetPath,'IncludeSubfolders', true, 'LabelSource', 'foldernames');
%划分数据为训练集合验证集,训练集中每个类别包含1张图像,验证集包含其余图像的标签
numTrainFiles               = 2;%设置每个类别的训练个数
[imdsTrain, imdsValidation] = splitEachLabel(imds,0.5);
end
 
if SEL == 2
digitDatasetPath = ['步态能量图0t45\'];
imds = imageDatastore(digitDatasetPath,'IncludeSubfolders', true, 'LabelSource', 'foldernames');
%划分数据为训练集合验证集,训练集中每个类别包含1张图像,验证集包含其余图像的标签
numTrainFiles               = 2;%设置每个类别的训练个数
[imdsTrain, imdsValidation] = splitEachLabel(imds,0.5);
end
..................................................
%定义卷积神经网络的基础结构
layers = [
    imageInputLayer([227 227 3]);%注意,227,227,不能改
    %第1个卷积层
    convolution2dLayer(3, 8, 'Padding', 'same');%第一个卷积层
    batchNormalizationLayer;
    reluLayer;
    maxPooling2dLayer(2, 'Stride', 2);
    
    %第2个卷积层
    convolution2dLayer(3, 8, 'padding', 'same');
    batchNormalizationLayer;
    reluLayer;
    maxPooling2dLayer(2, 'Stride', 2);
    
    
    %全连接层
    fullyConnectedLayer(20);
    %softmax
    softmaxLayer;
    %输出分类结果
    classificationLayer;];
 
%设置训练参数
options = trainingOptions('sgdm', ...
    'InitialLearnRate', 0.0001, ...
    'MaxEpochs', 200, ...
    'Shuffle', 'every-epoch', ...
    'ValidationData', imdsValidation, ...
    'ValidationFrequency', 10, ...
    'Verbose', false, ...
    'Plots', 'training-progress');
 
%使用训练集训练网络
net         = trainNetwork(imdsTrain, layers, options);
相关文章
|
1天前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。
|
1天前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
5天前
|
算法 5G 数据安全/隐私保护
SCM信道模型和SCME信道模型的matlab特性仿真,对比空间相关性,时间相关性,频率相关性
该简介展示了使用MATLAB 2022a进行无线通信信道仿真的结果,仿真表明信道的时间、频率和空间相关性随间隔增加而减弱,并且宏小区与微小区间的相关性相似。文中介绍了SCM和SCME模型,分别用于WCDMA和LTE/5G系统仿真,重点在于其空间、时间和频率相关性的建模。SCME模型在SCM的基础上进行了扩展,提供了更精细的参数化,增强了模型的真实性和复杂度。最后附上了MATLAB核心程序,用于计算不同天线间距下的空间互相关性。
10 0
|
5天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习入门:理解卷积神经网络(CNN)
【9月更文挑战第14天】本文旨在为初学者提供一个关于卷积神经网络(CNN)的直观理解,通过简单的语言和比喻来揭示这一深度学习模型如何识别图像。我们将一起探索CNN的基本组成,包括卷积层、激活函数、池化层和全连接层,并了解它们如何协同工作以实现图像分类任务。文章末尾将给出一个简单的代码示例,帮助读者更好地理解CNN的工作原理。
20 7
|
3天前
|
机器学习/深度学习 算法 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【9月更文挑战第16天】本文将深入浅出地介绍卷积神经网络(CNN)的基本概念、结构和工作原理,同时通过一个实际的代码示例来展示如何在Python中使用Keras库构建一个简单的CNN模型进行图像识别。我们将看到,即使是初学者也能够通过简单的步骤实现深度学习的强大功能,进而探索其在复杂数据集上的应用潜力。
|
10天前
|
机器学习/深度学习 自然语言处理 自动驾驶
CNN的魅力:探索卷积神经网络的无限可能
卷积神经网络(Convolutional Neural Networks, CNN)作为人工智能的重要分支,在图像识别、自然语言处理、医疗诊断及自动驾驶等领域展现了卓越性能。本文将介绍CNN的起源、独特优势及其广泛应用,并通过具体代码示例展示如何使用TensorFlow和Keras构建和训练CNN模型。
|
10天前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
深入浅出卷积神经网络(CNN)的奥秘
【9月更文挑战第3天】在人工智能的浪潮中,卷积神经网络(CNN)无疑是最耀眼的明星之一。本文将通过浅显易懂的语言,带你一探CNN的核心原理和应用实例。从图像处理到自然语言处理,CNN如何改变我们对数据的解读方式?让我们一起走进CNN的世界,探索它的魅力所在。
|
19天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)入门
【8月更文挑战第31天】在人工智能的璀璨星空中,卷积神经网络(CNN)如同一颗耀眼的星辰,以其卓越的图像处理能力在深度学习领域熠熠生辉。本文将带你领略CNN的魅力,从其结构原理到实战应用,深入浅出地探索这一技术的奥秘。我们将通过Python代码片段,一起实现一个简单的CNN模型,并讨论其在现实世界问题中的应用潜力。无论你是初学者还是有一定基础的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。