m基于GRNN广义回归神经网络和LLE特征提取的人脸情绪识别matlab仿真

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: m基于GRNN广义回归神经网络和LLE特征提取的人脸情绪识别matlab仿真

1.算法描述

    GRNN,即General Regression Neural Network,中文全称为广义回归神经网络,是由The Lockheed Palo Alto研究实验室在1991年提出的。GRNN是一种新型的基于非线性回归理论的神经网络模型。GRNN是建立在非参数核回归基础之上的,该神经网络是以测试样本为后验条件,并从观测样本中计算得到自变量和因变量之间的概率密度函数,然后在计算出因变量关于自变量的回归值。由于GRNN不需要规定模型的类型,只需要设置神经网络的光滑因子参数,GRNN神经网络的光滑因子参数的取值对神经网络的输出影响较大,当光滑因子参数较大的时候,其对应的神经元所覆盖的输入区域就越大;当光滑因子参数较小的时候,神经网络对应的径向基函数曲线较陡,因此神经网络输出结果更接近期望值,但此时光滑度越差。由于GRNN广义回归神经网络是基于非线性核回归分析的神经网络,因此,对于任意一个非独立变量y,其相对于独立变量x的回归分析的过程是计算具有最大概率值y。现假设随机变量x和y的联合概率密度函数为f (x ,y),已知x的观测值为X,则y相对于X的回归,即条件均值为:

408a4fb6bc9b5f89a578c4ed6ddb25da_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
78842477978085660cef62fa9410ef53_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
266590ac72e5be349a518c23fa08ecac_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    从图3的结构图可知,GRNN神经网络的输入层神经元数目和输入样本的维度是相同的,即每一个神经元将输入信号直接传递给GRNN神经网络的隐含层中。GRNN神经网络的模式层的神经元数目和学习训练样本的数目相同,即每一个神经元都分别对应着一个不同的学习训练样本.

2.仿真效果预览
matlab2022a仿真结果如下:

794e005a274d15f59f062652a50a88c0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
25b11c8d38e20f6cd289ee48ae66dbee_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

对于测试集人脸样本的生气识别率为93.3333%

对于测试集人脸样本的厌恶识别率为96.6667%

对于测试集人脸样本的害怕识别率为93.3333%

对于测试集人脸样本的开心识别率为90%

对于测试集人脸样本的中性识别率为100%

对于测试集人脸样本的悲伤识别率为93.3333%

对于测试集人脸样本的惊讶识别率为100%

整体识别率为95.2381%

3.MATLAB核心程序

for flag = 1:3
flag
 
if  SEL == 1
    display('读入训练集合...');
    
    if TEST_DATA == 1
       %第一组样本
       TrainData  = readfaceFeature(nExpressionPerPerson, nPerson,0,130);
       trainLabel = [1,1,2,2,3,3,3,4,4,4,5,5,6,6,7,7,1,1,2,2,2,3,3,4,4,5,5,6,6,7,7,1,1,2,3,3,4,4,4,5,5,6,6,6,7,7,1,1,2,2,3,3,4,4,5,5,6,6,7,7,1,1,2,2,3,3,4,4,4,5,5,6,6,7,1,1,2,3,3,4,4,5,5,6,6,7,7,1,1,2,2,3,3,4,4,5,5,6,6,7,7,1,1,2,2,3,3,4,4,5,5,6,6,7,7,1,1,2,2,3,3,3,4,4,5,5,6,6,7,7]';
       %降低维度
       %pcaFaces     = fastPCA(TrainData,DIM); % 主成分分析PCA
       pcaFaces   = lle(TrainData',12,DIM);
    end
    if TEST_DATA == 2
       %第二组样本jaffe
       TrainData0  = readfaceFeature2(nExpressionPerPerson, nPerson,0,140,flag);
       trainLabel1 = [1,2,3,4,5,6,7,...
                    1,2,3,4,5,6,7,...
                    1,2,3,4,5,6,7,...
                    1,2,3,4,5,6,7,...
                    1,2,3,4,5,6,7,...
                    1,2,3,4,5,6,7,...
                    1,2,3,4,5,6,7,...
                    1,2,3,4,5,6,7,...
                    1,2,3,4,5,6,7,...
                    1,2,3,4,5,6,7]';
                 
       trainLabel = [trainLabel1;trainLabel1];          
       %降低维度
       %pcaFaces     = fastPCA(TrainData,DIM); % 主成分分析PCA
       pcaFaces   = lle(TrainData0',12,DIM);
    end
    X          = pcaFaces; 
    TrainData  = X;
    [X,A0,B0]  = scaling(X);
    %替换算法,使用GRNN神经网络,否则原来的SVM我仔细研究下来,缺陷太大,几次改下来,性能也没到50%,所以选择pass
    %但为了你方便写论文,我在文档中将GRNN神经网络的理论都给你写了,然后测试大概也写了,
    net        = multiGRNNTrain(TrainData',trainLabel',0.0015);
    
    save NN_model.mat net A0 B0
    display('..............................');
    display('训练结束。');
end
 
 
 
display('读入测试集合...');
%降低维度
load NN_model.mat
load PCA.mat
load LLE.mat
if TEST_DATA == 1
   %第一组样本
   TestData0  = readfaceFeature(nExpressionPerPerson, nPerson,1,130);
   TestLabel  = [1,1,2,2,3,3,3,4,4,4,5,5,6,6,7,7,1,1,2,2,2,3,3,4,4,5,5,6,6,7,7,1,1,2,3,3,4,4,4,5,5,6,6,6,7,7,1,1,2,2,3,3,4,4,5,5,6,6,7,7,1,1,2,2,3,3,4,4,4,5,5,6,6,7,1,1,2,3,3,4,4,5,5,6,6,7,7,1,1,2,2,3,3,4,4,5,5,6,6,7,7,1,1,2,2,3,3,4,4,5,5,6,6,7,7,1,1,2,2,3,3,3,4,4,5,5,6,6,7,7]';
   [m,n]      = size(TestData0);
   TestData   = (TestData0-repmat(meanVec, m, 1))*V; % 经过pca变换降维
end
if TEST_DATA == 2
   %第二组样本jaffe
   TestData0  = readfaceFeature2(nExpressionPerPerson, nPerson,1,70,flag);
   TestLabel = [1,2,3,4,5,6,7,...
                1,2,3,4,5,6,7,...
                1,2,3,4,5,6,7,...
                1,2,3,4,5,6,7,...
                1,2,3,4,5,6,7,...
                1,2,3,4,5,6,7,...
                1,2,3,4,5,6,7,...
                1,2,3,4,5,6,7,...
                1,2,3,4,5,6,7,...
                1,2,3,4,5,6,7]';
   [m,n]      = size(TestData0);
   TestData   = (TestData0-repmat(meanVec, m, 1))*V; % 经过pca变换降维
end
..............................................
 
end
相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
53 31
|
27天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
16天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
2天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
1月前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。

热门文章

最新文章