基于matlab的分簇异构无线传感器网络选举协议

简介: 基于matlab的分簇异构无线传感器网络选举协议

1.算法描述

   为了进一步均衡网络能耗,延长网络生命周期,提出了一种基于最优分簇的能量异构无线传感器网络路由协议(OCRP)。OCRP协议考虑了最优簇首数K,将待测区域划分为K个固定分区,优化了成簇过程;在簇首选择阶段,充分考虑了节点的剩余能量、整个网络的能量以及节点与基站之间的距离,改进了簇头选举机制。

2.仿真效果预览
matlab2022a仿真结果如下:

3ee0cd2066a1f92e038d62f985cee985_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
accdb070490c2f11ed18f236e5145c4e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
973917a391ef9ca521c9ba1fc7cab8b8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

%counter for CHs per round
rcountCHs=0;
cluster=1;
t=0;
countCHs;
rcountCHs=rcountCHs+countCHs;
flag_first_dead=0;
 
for r=0:1:rmax
    r;
 
  %Election Probability for Normal Nodes
  pnrm=( p/ (1+a*m) );
  %Election Probability for Advanced Nodes
  padv= ( p*(1+a)/(1+a*m) );
    
  %Operation for heterogeneous epoch
  if(mod(r, round(1/pnrm) )==0)
    for i=1:1:n
        S(i).G=0;
        S(i).cl=0;
    end
  end
 
 %Operations for sub-epochs
 if(mod(r, round(1/padv) )==0)
    for i=1:1:n
        if(S(i).ENERGY==1)
            S(i).G=0;
            S(i).cl=0;
        end
    end
  end
 
 
%hold off;
 
%Number of dead nodes
dead=0;
%Number of dead Advanced Nodes
dead_a=0;
%Number of dead Normal Nodes
dead_n=0;
 
%counter for bit transmitted to Bases Station and to Cluster Heads
packets_TO_BS=0;
packets_TO_CH=0;
%counter for bit transmitted to Bases Station and to Cluster Heads 
%per round
PACKETS_TO_CH(r+1)=0;
PACKETS_TO_BS(r+1)=0;
 
figure;
 
for i=1:1:n
    %checking if there is a dead node
    if (S(i).E<=0)
        plot(S(i).xd,S(i).yd,'red .');
        dead=dead+1;
        if(S(i).ENERGY==1)
            dead_a=dead_a+1;
        end
        if(S(i).ENERGY==0)
            dead_n=dead_n+1;
        end
        hold on;    
    end
    if S(i).E>0
        S(i).type='N';
        if (S(i).ENERGY==0)  
        plot(S(i).xd,S(i).yd,'o');
        end
        if (S(i).ENERGY==1)  
        plot(S(i).xd,S(i).yd,'+');
        end
        hold on;
    end
end
plot(S(n+1).xd,S(n+1).yd,'ks');
 
 
STATISTICS(r+1).DEAD=dead;
DEAD(r+1)=dead;
DEAD_N(r+1)=dead_n;
DEAD_A(r+1)=dead_a;
 
%When the first node dies
if (dead==1)
    if(flag_first_dead==0)
        first_dead=r
        flag_first_dead=1;
    end
end
 
countCHs=0;
cluster=1;
for i=1:1:n
    if(S(i).far~=-1)
    if(S(i).E>0 )
   temp_rand=rand;     
   if ( (S(i).G)<=0)
 
 %Election of Cluster Heads for normal nodes
 if( ( S(i).ENERGY==0 && ( temp_rand <= ( pnrm / ( 1 - pnrm * mod(r,round(1/pnrm)) )) ) )  )
 
            countCHs=countCHs+1;
            packets_TO_BS=packets_TO_BS+1;
            PACKETS_TO_BS(r+1)=packets_TO_BS;
            
            S(i).type='C';
            S(i).G=100;
            C(cluster).xd=S(i).xd;
            C(cluster).yd=S(i).yd;
            plot(S(i).xd,S(i).yd,'k*');
            
            distance=sqrt( (S(i).xd-(S(n+1).xd) )^2 + (S(i).yd-(S(n+1).yd) )^2 );
            C(cluster).distance=distance;
            C(cluster).id=i;
            X(cluster)=S(i).xd;
            Y(cluster)=S(i).yd;
            cluster=cluster+1;
            
            %Calculation of Energy dissipated
            distance;
            if (distance>do)
                S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Emp*4000*( distance*distance*distance*distance )); 
            end
            if (distance<=do)
                S(i).E=S(i).E- ( (ETX+EDA)*(4000)  + Efs*4000*( distance * distance )); 
            end
        end     
    
 
 
 %Election of Cluster Heads for Advanced nodes
 if( ( S(i).ENERGY==1 && ( temp_rand <= ( padv / ( 1 - padv * mod(r,round(1/padv)) )) ) )  )
相关文章
|
26天前
|
传感器 算法 安全
基于分布式模型预测控制DMPC的单向拓扑结构下异构车辆车队研究(Matlab代码实现)
基于分布式模型预测控制DMPC的单向拓扑结构下异构车辆车队研究(Matlab代码实现)
|
1月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
192 0
|
18天前
|
监控 负载均衡 安全
WebSocket网络编程深度实践:从协议原理到生产级应用
蒋星熠Jaxonic,技术宇宙中的星际旅人,以代码为舟、算法为帆,探索实时通信的无限可能。本文深入解析WebSocket协议原理、工程实践与架构设计,涵盖握手机制、心跳保活、集群部署、安全防护等核心内容,结合代码示例与架构图,助你构建稳定高效的实时应用,在二进制星河中谱写极客诗篇。
WebSocket网络编程深度实践:从协议原理到生产级应用
|
27天前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
141 15
|
28天前
|
负载均衡 算法 调度
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
112 11
|
1月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
28天前
|
算法 数据挖掘 区块链
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
|
1月前
|
运维 架构师 安全
二层协议透明传输:让跨域二层协议“无感穿越”多服务商网络
简介:本文详解二层协议透明传输技术,适用于企业网工、运营商及架构师,解决LLDP/LACP/BPDU跨运营商传输难题,实现端到端协议透传,提升网络韧性与运维效率。
|
1月前
|
机器学习/深度学习 传感器 算法
【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)
【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)
167 7

热门文章

最新文章