【数据结构】算法的复杂度分析:让你拥有未卜先知的能力

简介: 【数据结构】算法的复杂度分析:让你拥有未卜先知的能力

一、前言

一个程序能用很多不同的算法来实现,那么到底那种算法是效率最高的呢?
对此我们有两种方法:

第一种是事后统计法,既在编写之后,通过计时,比较不同算法编写的程序的运行时间,以此确定算法效率的高低。但是该方法的缺陷很大,会受到测试环境、数据规模的影响。

第二种是事前分析法,即在编写之前,依据一些统计方法对算法进行粗略估算,大致的估算出该算法的时间复杂度和空间复杂度,通过对比复杂度来评判那种算法的效率更高。

在这里插入图片描述
可以说,学会了如何分析一个算法的复杂度,就拥有了未卜先知的能力,即在这个算法被写出来之前,就能大致评判出这个算法的好坏。

二、时间复杂度

1、定义

维基百科:在计算机科学中,算法的时间复杂度(time complexity)是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。

在这里插入图片描述

额......具体来举个例子吧。

void Func1(int N)
{
int count = 0;
// n*n次
for (int i = 0; i < N ; ++ i)
{
 for (int j = 0; j < N ; ++ j)
 {
 ++count;
 }
}
// 2*n次
for (int k = 0; k < 2 * N ; ++ k)
{
 ++count;
}
// 10次
int M = 10;
while (M--)
{
 ++count;
}
printf("%d\n", count);
}

这个函数一共执行的基本操作次数为:$F(n)=n^2+2*n+10$
但是,我们计算复杂度的时候,不一定需要计算这么精确的执行次数,我们只需要计算出大概的执行次数就行了,所以这里我们应该使用大O的渐进表示法。那么什么是大O表示法呢?

2、大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为(趋向于特定值或无穷大)的数学符号。

上面函数一共执行的操作次数为:$F(n)=n^2+2*n+10$
学过极限的都知道,当$n$趋向于无穷的时候,$n^2+2*n+10$ 中的$2*n$和10可以忽略不记。
所以用大O的渐进表示法,上面函数的时间复杂度应该为:$O(n^2)$
**这里我们可以简单的总结一下方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、嵌套代码的复杂度等于嵌套内外代码复杂度的乘积。
4、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。**

3、常见的时间复杂度

  • $O(1)$型
一般情况下,要算法的执行时间不随问题规模 n 的增加而增大,那么就是$O(1)$的时间复杂度
void Func(int n)
{
 int count = 0;
 for (int k = 0; k < 100; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

以上代码看似存在循环,但是仔细看,当循环到第100次的时候,这个循环就停止了。
所以上面的时间复杂度为 $O(1)$

  • $O(logn)$型
类似于二分查找、幂运算都是$O(logn)$的时间复杂度
void Func(int n)
{
 int i=1;
 while (i <= n)  
 {
   i = i * 2;
 }
}

以上代码,变量 i 从 1 开始,每循环一次就乘以 2。当大于n时,循环结束。所以,假设一共循环了$x$次,那么我们就可以得到:$2^x=n$ 即$x=log_2n$ ,忽略掉底数2,则该时间复杂度为:$O(logn)$

在这里插入图片描述

为什么可以忽略掉底数?
高中学过的换底公式:$log_bn=log_ba*log_an$
现在假设底数不是2是3,我们可以把$log_3n$写成$log_32*log_2n$,根据前面的规矩: 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。 而这里的$log_32$是个常数,可以直接去除。所以兜兜转转,最后的时间复杂度还是$O(logn)$
  • $O(nlogn)$型
void Func(int n)
{
    for (int i = 1; i <= n; i++)
    {
        int j = 1;
        while (j <= n)
        {
            j = j * 2;
        }
    }
}

根据上面可以知道,这个循环里面的循环的复杂度是$O(logn)$,而这个循环又要执行n次,所以算下来,它的时间复杂度是$O(nlogn)$

  • $O(n)$型
void Func(int n)
{
    for (int i = 1; i <= n; i++)
    {
        printf("我一共执行了n次哦!");
    }
}
  • $O(n^2)$型
循环套循环,每个循环都是n次
void Func(int n)
{
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            printf("我一共执行了n*n次哦!");
        }
    }
}
  • $O(m*n)$型
void Func(int n,int m)
{
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= m; j++)
        {
            printf("看的出来我有那些不一样吗?");
        }
    }
}

在这里插入图片描述
确实还有其他很多不同的时间复杂度,比如,$O(2^n)、O(n!)$...但是这些时间复杂度都太高了,以至于高到很多计算机都承受不了,所以比较少见。

在这里插入图片描述
在这里插入图片描述

三、空间复杂度

1、定义

维基百科:在计算机科学中,一个算法或程序的空间复杂度定性地描述该算法或程序运行所需要的存储空间大小。空间复杂度是相应计算问题的输入值的长度的函数,它表示一个算法完全执行所需要的存储空间大小。和时间复杂度类似,空间复杂度通常也使用大O记号来渐进地表示例如$O(n)、O(nlogn)$其中n用来表示输入的长度,该值可以影响算法的空间复杂度。

就像时间复杂度的计算不考虑算法所使用的空间大小一样,空间复杂度也不考虑算法运行需要的时间长短。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

2、常见的空间复杂度

  • $O(1)型$
无论 n 的值如何变化,代码在执行过程中开辟的内存空间是固定的
void Func(int n)
{
    int i = 0; int sum = 0;
    for (i = 1; i < n; i++)
    {
        sum = sum + i;
    }
}

这段代码之开辟了sum和i两个int类型的空间,大小是固定的。
所以这段代码的空间复杂度为$O(1)$

  • $O(n)型$
随着n的值的增大,开辟的空间也逐渐增大
long long Fac(size_t N)
{
 if(N == 0)
 return 1;
 
 return Fac(N-1)*N;
}

这段代码递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。
所以这段代码的空间复杂度为$O(N)$

  • $O(n^2)型$
  int** fun(int n) {
    int ** s = (int **)malloc(n * sizeof(int *));
    while(n--)
      s[n] = (int *)malloc(n * sizeof(int));
    return s;
  }

此处开辟的是一个二维数组,数组有n行,每行分别有1,2,3,...n列,所以是$n(n + 1)/2$个元素空间,空间复杂度为$n^2$

在这里插入图片描述

相关文章
|
3月前
|
机器学习/深度学习 边缘计算 算法
NOMA和OFDMA优化算法分析
NOMA和OFDMA优化算法分析
231 127
|
5月前
|
数据采集 机器学习/深度学习 算法
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
205 4
|
2月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
59 1
|
2月前
|
运维 Prometheus 监控
“服务器又宕了?”别急,智能运维教你如何未卜先知!
“服务器又宕了?”别急,智能运维教你如何未卜先知!
105 0
|
2月前
|
人工智能 自然语言处理 算法
2025 年 7 月境内深度合成服务算法备案情况分析报告
2025年7月,中央网信办发布第十二批深度合成算法备案信息,全国389款产品通过备案,服务提供者占比超七成。截至7月14日,全国累计备案达3834款,覆盖文本、图像、音视频等多模态场景,广泛应用于生活服务、医疗、金融等领域。广东以135款居首,数字人、AI客服等C端应用主导,民营企业成主力,国企聚焦公共服务。随着AI政策推动,备案已成为AI产品合规上线关键环节。
|
2月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
62 0
|
4月前
|
机器学习/深度学习 数据采集 算法
大数据加持的预测性维护:让设备故障“未卜先知”
大数据加持的预测性维护:让设备故障“未卜先知”
158 2
|
5月前
|
存储 监控 算法
员工行为监控软件中的 Go 语言哈希表算法:理论、实现与分析
当代企业管理体系中,员工行为监控软件已逐步成为维护企业信息安全、提升工作效能的关键工具。这类软件能够实时记录员工操作行为,为企业管理者提供数据驱动的决策依据。其核心支撑技术在于数据结构与算法的精妙运用。本文聚焦于 Go 语言中的哈希表算法,深入探究其在员工行为监控软件中的应用逻辑与实现机制。
143 14
|
6月前
|
自然语言处理 算法 安全
境内深度合成服务算法备案通过名单分析报告
本报告基于《境内深度合成服务算法备案通过名单》,分析了2023年6月至2025年3月公布的10批备案数据,涵盖属地分布、行业应用及产品形式等多个维度。报告显示,深度合成算法主要集中于经济发达地区,如北京、广东、上海等地,涉及教育、医疗、金融、娱乐等多行业。未来趋势显示技术将向多模态融合、行业定制化和安全合规方向发展。建议企业加强技术研发、拓展应用场景、关注政策动态,以在深度合成领域抢占先机。此分析旨在为企业提供参考,助力把握技术发展机遇。
境内深度合成服务算法备案通过名单分析报告
|
6月前
|
供应链 算法 搜索推荐
从公布的前十一批其他算法备案通过名单分析
2025年3月12日,国家网信办发布算法备案信息,深度合成算法通过395款,其他算法45款。前10次备案中,深度合成算法累计3234款,其他类别647款。个性化推送类占比49%,涵盖电商、资讯、视频推荐;检索过滤类占31.53%,用于搜索优化和内容安全;调度决策类占9.12%,集中在物流配送等;排序精选类占8.81%,生成合成类占1.55%。应用领域包括电商、社交媒体、物流、金融、医疗等,互联网科技企业主导,技术向垂直行业渗透,内容安全和多模态技术成新增长点。未来大模型检索和多模态生成或成重点。
从公布的前十一批其他算法备案通过名单分析

热门文章

最新文章