Redis学习(十):缓存穿透、缓存击穿和缓存雪崩

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: key对应的数据在数据源中并不存在,每次针对此key的请求从缓存获取不到,这些请求都会压入数据源中,从而可能压垮数据源。

一、缓存穿透



1、问题描述

       

key对应的数据在数据源中并不存在,每次针对此key的请求从缓存获取不到,这些请求都会压入数据源中,从而可能压垮数据源。


比如用一个不存在的用户id获取用户信息,不论缓存还是数据库都没有。若黑客利用此漏洞进行攻击可能压垮数据库。

5c0283c17fbb485ea2a217e3c1eb5e12.png

3、解决方案


(1)对空值缓存:

如果一个查询返回的数据为空(不管是数据是否不存在),我们仍然把这个空结果(null)进行缓存,设置空结果的过期时间会很短,最长不超过五分钟;


(2)设置可访问的名单(白名单):

       使用bitmaps类型定义一个可以访问的名单,名单id作为bitmaps的偏移量,每次访问和bitmap里面的id进行比较,如果访问id不在bitmaps里面,进行拦截,不允许访问。


(3)采用布隆过滤器:(布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量(位图)和一系列随机映射函数(哈希函数)。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。将所有可能存在的数据哈希到一个足够大的bitmaps中,一个一定不存在的数据会被这个bitmaps拦截掉,从而避免了对底层存储系统的查询压力。


(4)进行实时监控:当发现Redis的命中率开始急速降低,需要排查访问对象和访问的数据,和运维人员配合,可以设置黑名单限制服务。


二、缓存击穿


1、问题描述

       

key对应的数据存在,但在redis中过期,此时若有大量并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。


key可能会在某些时间点被超高并发地访问,是一种非常“热点”的数据。这个时候,需要考虑一个问题:缓存被“击穿”的问题。

97dad70261e1447bae34268d349e16da.png


3、解决方案

       

(1)预先设置热门数据:  

在redis高峰访问之前,把一些热门数据提前存入到redis里面,加大这些热门数据key的时长;


(2)实时调整:

现场监控哪些数据热门,实时调整key的过期时长;


(3)使用锁(效率较低):

1、就是在缓存失效的时候(判断拿出来的值为空),不是立即去load db。

2、先使用缓存工具的某些带成功操作返回值的操作(比如Redis的SETNX)去set一个mutex key

3、当操作返回成功时,再进行load db的操作,并回设缓存,最后删除mutex key;

4、当操作返回失败,证明有线程在load db,当前线程睡眠一段时间再重试整个get缓存的方法。

f73c7676cf6f4f358d79f7b723b5247f.png


三、缓存雪崩



1、问题描述

       

key对应的数据存在,但在redis中过期,此时若有大量并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。


缓存雪崩与缓存击穿的区别在于这里针对很多key缓存,后者则是某一个key。

5a57e8e7307f4a1dbc988b74f9b04d94.png


缓存失效瞬间:


54af77e40e5a480593dc26dd036d415d.png


3、解决方案


(1)构建多级缓存架构:

   

nginx缓存 + redis缓存 +其他缓存(ehcache等)


(2)使用锁或队列(效率太低,不适用高并发情况):

     

用加锁或者队列的方式保证来保证不会有大量的线程对数据库一次性进行读写,从而避免失效时大量的并发请求落到底层存储系统上。


(3)设置过期标志更新缓存:

   

记录缓存数据是否过期(设置提前量),如果过期会触发通知另外的线程在后台去更新实际key的缓存。


(4)将缓存失效时间分散开:

     

比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
打赏
0
0
0
0
178
分享
相关文章
Redis--缓存击穿、缓存穿透、缓存雪崩
缓存击穿、缓存穿透和缓存雪崩是Redis使用过程中可能遇到的常见问题。理解这些问题的成因并采取相应的解决措施,可以有效提升系统的稳定性和性能。在实际应用中,应根据具体场景,选择合适的解决方案,并持续监控和优化缓存策略,以应对不断变化的业务需求。
104 29
Redis 与 AI:从缓存到智能搜索的融合之路
Redis 已从传统缓存系统发展为强大的 AI 支持平台,其向量数据库功能和 RedisAI 模块为核心,支持高维向量存储、相似性搜索及模型服务。文章探讨了 Redis 在实时数据缓存、语义搜索与会话持久化中的应用场景,并通过代码案例展示了与 Spring Boot 的集成方式。总结来看,Redis 结合 AI 技术,为现代应用提供高效、灵活的解决方案。
什么是缓存击穿 ? 怎么解决 ?
缓存击穿是指缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大 解决方案 : ● 热点数据提前预热 ● 设置热点数据永远不过期。 ● 加锁 , 限流
什么是缓存穿透 ? 怎么解决 ?
缓存穿透是指查询一条数据库和缓存都没有的一条数据,就会一直查询数据库,对数据库的访问压力就会增大,缓存穿透的解决方案 有以下2种解决方案 : ● 缓存空对象:代码维护较简单,但是效果不好。 ● 布隆过滤器:代码维护复杂,效果很好
Redis缓存设计与性能优化
Redis缓存设计与性能优化涵盖缓存穿透、击穿、雪崩及热点key重建等问题。针对缓存穿透,可采用缓存空对象或布隆过滤器;缓存击穿通过随机设置过期时间避免集中失效;缓存雪崩需确保高可用性并使用限流熔断组件;热点key重建利用互斥锁防止大量线程同时操作。此外,开发规范强调键值设计、命令使用和客户端配置优化,如避免bigkey、合理使用批量操作和连接池管理。系统内核参数如vm.swappiness、vm.overcommit_memory及文件句柄数的优化也至关重要。慢查询日志帮助监控性能瓶颈。
73 9
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
Redis缓存穿透、缓存雪崩、redis并发问题分析
把redis作为缓存使用已经是司空见惯,但是使用redis后也可能会碰到一系列的问题,尤其是数据量很大的时候,经典的几个问题如下: (一)缓存和数据库间数据一致性问题 分布式环境下(单机就不用说了)非常容易出现缓存和数据库间的数据一致性问题,针对这一点的话,只能说,如果你的项目对缓存的要求是强一致性的,那么请不要使用缓存。
1907 0
Redis应用—8.相关的缓存框架
本文介绍了Ehcache和Guava Cache两个缓存框架及其使用方法,以及如何自定义缓存。主要内容包括:Ehcache缓存框架、Guava Cache缓存框架、自定义缓存。总结:Ehcache适合用作本地缓存或与Redis结合使用,Guava Cache则提供了更灵活的缓存管理和更高的并发性能。自定义缓存可以根据具体需求选择不同的数据结构和引用类型来实现特定的缓存策略。
126 16
Redis应用—8.相关的缓存框架
解决Redis缓存数据类型丢失问题
解决Redis缓存数据类型丢失问题
230 85
Redis,分布式缓存演化之路
本文介绍了基于Redis的分布式缓存演化,探讨了分布式锁和缓存一致性问题及其解决方案。首先分析了本地缓存和分布式缓存的区别与优劣,接着深入讲解了分布式远程缓存带来的并发、缓存失效(穿透、雪崩、击穿)等问题及应对策略。文章还详细描述了如何使用Redis实现分布式锁,确保高并发场景下的数据一致性和系统稳定性。最后,通过双写模式和失效模式讨论了缓存一致性问题,并提出了多种解决方案,如引入Canal中间件等。希望这些内容能为读者在设计分布式缓存系统时提供有价值的参考。感谢您的阅读!
156 6
Redis,分布式缓存演化之路

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等