毕业设计在iOS上使用OpenCV实现图片中的文字框选文字识别

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
简介: 毕业设计在iOS上使用OpenCV实现图片中的文字框选文字识别

项目代码:https://download.csdn.net/download/qq_38735017/87379918


准备工作


首先,需要去OpenCV官网下载iOS的framework,下载好后拖入新建的工程中即可,由于OpenCV库是使用C++编写,所以swift无法直接使用,需要使用OC做桥接,需要使用swift的同学可以看下这篇文章Using OpenCV in an iOS app。


实验流程


根据OpenCV入门笔记(七) 文字区域的提取中提供的思路,我实现了OC版本的代码,通过测试,清晰的文字截图识别没有问题,但是在复杂的拍照场景中几乎无法识别任何内容,例如下图


f83d3caa63214c9c6e97f44f836b7b1c.jpg


这张是相机拍摄的屏幕上的文字,有清晰的竖纹及屏幕反光,在该算法下,最终的框选区域是整个图片,无法识别文字区域,说明这个处理流程还是不完善的,我们先来看一下他的处理过程:


  1. 将图片转为灰度图
  2. 形态学变换的预处理,得到可以查找矩形的图片
  3. 查找和筛选文字区域
  4. 用绿线画出这些找到的轮廓


根据前面得到的识别结果,我们大致可以猜测问题出在了第二步,由于竖纹影响将全部文字区域连城一片,导致整图被框选。


那么在第二步中都做了哪些操作呢?

e6dc030e5196fbd2a28d2fae3d0ab3c1.jpg

实际上上面的流程一共做了4步操作,二值化->膨胀->腐蚀->再膨胀,这个流程对于正常的白底文本截图的识别没有问题,一但图片中出现了噪点,噪点在第一次膨胀的之后被放大,对整个图像产生不可逆的污染,我们先来看一下二值化后的图像


b13dee46a6f618141d3df43770e9170e.jpg


文字还是很清晰的,但是竖纹一样明显,接着第二步膨胀,看下会怎样


710291cf28468710ad39278c8621bbf5.jpg


一片白,不用往下看了吧。


既然如此,就需要我们修改一下在第二步的处理流程了

在反转图像(由黑白变为白黑)之前,需要对图像进行降噪处理,因为OpenCV是对亮点进行操作,在黑白图像中降噪更容易处理(去除杂乱黑点),降噪使用的方法仍然是上面的膨胀和腐蚀法

//第一次二值化,转为黑白图片
cv::Mat binary;                  cv::adaptiveThreshold(gray,binary,255,cv::ADAPTIVE_THRESH_GAUSSIAN_C,cv::THRESH_BINARY,31,10);
//在第二次二值化之前 为了去除噪点 做了两次膨胀腐蚀
//膨胀一次
cv::Mat dilateelement = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(4,2));
cv::Mat dilate1;dilate(binary, dilate1, dilateelement);
//轻度腐蚀一次,去除噪点
cv::Mat element3 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(4,4));
cv::Mat erode11;erode(dilate1, erode11, element3);
//第二次膨胀
cv::Mat dilateelement12 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5,1));
cv::Mat dilate12;dilate(erode11, dilate12, dilateelement12);
//轻度腐蚀一次,去除噪点
cv::Mat element12 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5,1));
cv::Mat erode12;erode(dilate12, erode12, element12);



看一下经过两次降噪之后的图像是怎么样的


bbc16577864f55acfce3e92308479fc9.jpg


竖纹基本上不见了,仍然还有一部分黑点,但是已经不影响后面的识别了,这里降噪只能适度,过度处理可能会使文字部分丢失。


0f8e9291c23e7274dcd29955af874ba2.jpg

做完二值化反转之后是上面这个样子的,接下来再对图片做膨胀->腐蚀->膨胀处理


//二值化 第二次二值化将黑白图像反转 文字变亮
cv::Mat binary2;  
cv::adaptiveThreshold(erode12,binary2,255,cv::ADAPTIVE_THRESH_GAUSSIAN_C,cv::THRESH_BINARY_INV,17,10);
//横向膨胀拉伸 文字连片形成亮条
cv::Mat dilateelement21 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(60,1));
cv::Mat dilate21;
dilate(binary2, dilate21, dilateelement21);
//腐蚀一次,去掉细节,表格线等。这里去掉的是竖直的线
cv::Mat erodeelement21 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(30,1));
cv::Mat erode21;
erode(dilate21, erode21, erodeelement21);
//再次膨胀,让轮廓明显一些
cv::Mat dilateelement22 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5,1));
cv::Mat dilate22;
dilate(erode21, dilate22, dilateelement22);


处理的结果图如下:


535c53ef312b9dd8a4cc1d3e11a9422f.jpg

最终的框选效果


a274f83b0bf7cffcf09cae696efb624c.jpg


其他调试结果

当然调试过程中不止用了这一张图片,毕竟结果要有一定的普适性,下面是其他几种情况下的识别结果

237b5f06330b9e15face11e07ca78ea9.jpg


b6a59853bc69026a61dc90c571b632ee.jpg


545c26876ff74105f3d614e4bc682202.jpg


相关文章
|
3月前
|
计算机视觉
Opencv学习笔记(十二):图片腐蚀和膨胀操作
这篇文章介绍了图像腐蚀和膨胀的原理、作用以及使用OpenCV实现这些操作的代码示例,并深入解析了开运算和闭运算的概念及其在图像形态学处理中的应用。
211 1
Opencv学习笔记(十二):图片腐蚀和膨胀操作
|
3月前
|
计算机视觉 Python
Opencv学习笔记(二):如何将整个文件下的彩色图片全部转换为灰度图
使用OpenCV库将一个文件夹内的所有彩色图片批量转换为灰度图,并提供了相应的Python代码示例。
45 0
Opencv学习笔记(二):如何将整个文件下的彩色图片全部转换为灰度图
|
3月前
|
计算机视觉 Python
Opencv学习笔记(一):如何将得到的图片保存在指定目录以及如何将文件夹里所有图片以数组形式输出
这篇博客介绍了如何使用OpenCV库在Python中将图片保存到指定目录,以及如何将文件夹中的所有图片读取并以数组形式输出。
252 0
Opencv学习笔记(一):如何将得到的图片保存在指定目录以及如何将文件夹里所有图片以数组形式输出
|
3月前
|
计算机视觉
Opencv错误笔记(一):通过cv2保存图片采用中文命名出现乱码
在使用OpenCV的cv2模块保存带有中文命名的图片时,直接使用cv2.imwrite()会导致乱码问题,可以通过改用cv2.imencode()方法来解决。
206 0
Opencv错误笔记(一):通过cv2保存图片采用中文命名出现乱码
|
5天前
|
编解码 文字识别 自然语言处理
如何使用OCR技术批量识别图片中的文字并重命名文件,OCR 技术批量识别图片中的文字可能出现的错误
### 简介 【批量识别图片内容重命名】工具可批量识别图片中的文字并重命名文件,方便高效处理大量图片。然而,OCR 技术面临字符识别错误(如形近字混淆、生僻字识别不佳)、格式错误(段落错乱、换行问题)和语义理解错误等挑战。为提高准确性,建议提升图片质量、选择合适的 OCR 软件及参数,并结合自动校对与人工审核,确保最终文本的正确性和完整性。
33 12
如何使用OCR技术批量识别图片中的文字并重命名文件,OCR 技术批量识别图片中的文字可能出现的错误
|
5月前
|
计算机视觉 Windows Python
windows下使用python + opencv读取含有中文路径的图片 和 把图片数据保存到含有中文的路径下
在Windows系统中,直接使用`cv2.imread()`和`cv2.imwrite()`处理含中文路径的图像文件时会遇到问题。读取时会返回空数据,保存时则无法正确保存至目标目录。为解决这些问题,可以使用`cv2.imdecode()`结合`np.fromfile()`来读取图像,并使用`cv2.imencode()`结合`tofile()`方法来保存图像至含中文的路径。这种方法有效避免了路径编码问题,确保图像处理流程顺畅进行。
488 1
|
3月前
|
Serverless 计算机视觉
语义分割笔记(三):通过opencv对mask图片来画分割对象的外接椭圆
这篇文章介绍了如何使用OpenCV库通过mask图像绘制分割对象的外接椭圆。首先,需要加载mask图像,然后使用`cv2.findContours()`寻找轮廓,接着用`cv2.fitEllipse()`拟合外接椭圆,最后用`cv2.ellipse()`绘制椭圆。文章提供了详细的代码示例,展示了从读取图像到显示结果的完整过程。
75 0
语义分割笔记(三):通过opencv对mask图片来画分割对象的外接椭圆
|
5月前
|
机器学习/深度学习 文字识别 前端开发
基于 Spring Boot 3.3 + OCR 实现图片转文字功能
【8月更文挑战第30天】在当今数字化信息时代,图像中的文字信息越来越重要。无论是文档扫描、名片识别,还是车辆牌照识别,OCR(Optical Character Recognition,光学字符识别)技术都发挥着关键作用。本文将围绕如何使用Spring Boot 3.3结合OCR技术,实现图片转文字的功能,分享工作学习中的技术干货。
275 2
|
5月前
|
存储 编解码 API
python多种方法压缩图片,opencv、PIL、tinypng、pngquant压缩图片
python多种方法压缩图片,opencv、PIL、tinypng、pngquant压缩图片
364 1
|
3月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
740 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解

热门文章

最新文章