毕业设计在iOS上使用OpenCV实现图片中的文字框选文字识别

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 毕业设计在iOS上使用OpenCV实现图片中的文字框选文字识别

项目代码:https://download.csdn.net/download/qq_38735017/87379918


准备工作


首先,需要去OpenCV官网下载iOS的framework,下载好后拖入新建的工程中即可,由于OpenCV库是使用C++编写,所以swift无法直接使用,需要使用OC做桥接,需要使用swift的同学可以看下这篇文章Using OpenCV in an iOS app。


实验流程


根据OpenCV入门笔记(七) 文字区域的提取中提供的思路,我实现了OC版本的代码,通过测试,清晰的文字截图识别没有问题,但是在复杂的拍照场景中几乎无法识别任何内容,例如下图


f83d3caa63214c9c6e97f44f836b7b1c.jpg


这张是相机拍摄的屏幕上的文字,有清晰的竖纹及屏幕反光,在该算法下,最终的框选区域是整个图片,无法识别文字区域,说明这个处理流程还是不完善的,我们先来看一下他的处理过程:


  1. 将图片转为灰度图
  2. 形态学变换的预处理,得到可以查找矩形的图片
  3. 查找和筛选文字区域
  4. 用绿线画出这些找到的轮廓


根据前面得到的识别结果,我们大致可以猜测问题出在了第二步,由于竖纹影响将全部文字区域连城一片,导致整图被框选。


那么在第二步中都做了哪些操作呢?

e6dc030e5196fbd2a28d2fae3d0ab3c1.jpg

实际上上面的流程一共做了4步操作,二值化->膨胀->腐蚀->再膨胀,这个流程对于正常的白底文本截图的识别没有问题,一但图片中出现了噪点,噪点在第一次膨胀的之后被放大,对整个图像产生不可逆的污染,我们先来看一下二值化后的图像


b13dee46a6f618141d3df43770e9170e.jpg


文字还是很清晰的,但是竖纹一样明显,接着第二步膨胀,看下会怎样


710291cf28468710ad39278c8621bbf5.jpg


一片白,不用往下看了吧。


既然如此,就需要我们修改一下在第二步的处理流程了

在反转图像(由黑白变为白黑)之前,需要对图像进行降噪处理,因为OpenCV是对亮点进行操作,在黑白图像中降噪更容易处理(去除杂乱黑点),降噪使用的方法仍然是上面的膨胀和腐蚀法

//第一次二值化,转为黑白图片
cv::Mat binary;                  cv::adaptiveThreshold(gray,binary,255,cv::ADAPTIVE_THRESH_GAUSSIAN_C,cv::THRESH_BINARY,31,10);
//在第二次二值化之前 为了去除噪点 做了两次膨胀腐蚀
//膨胀一次
cv::Mat dilateelement = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(4,2));
cv::Mat dilate1;dilate(binary, dilate1, dilateelement);
//轻度腐蚀一次,去除噪点
cv::Mat element3 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(4,4));
cv::Mat erode11;erode(dilate1, erode11, element3);
//第二次膨胀
cv::Mat dilateelement12 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5,1));
cv::Mat dilate12;dilate(erode11, dilate12, dilateelement12);
//轻度腐蚀一次,去除噪点
cv::Mat element12 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5,1));
cv::Mat erode12;erode(dilate12, erode12, element12);



看一下经过两次降噪之后的图像是怎么样的


bbc16577864f55acfce3e92308479fc9.jpg


竖纹基本上不见了,仍然还有一部分黑点,但是已经不影响后面的识别了,这里降噪只能适度,过度处理可能会使文字部分丢失。


0f8e9291c23e7274dcd29955af874ba2.jpg

做完二值化反转之后是上面这个样子的,接下来再对图片做膨胀->腐蚀->膨胀处理


//二值化 第二次二值化将黑白图像反转 文字变亮
cv::Mat binary2;  
cv::adaptiveThreshold(erode12,binary2,255,cv::ADAPTIVE_THRESH_GAUSSIAN_C,cv::THRESH_BINARY_INV,17,10);
//横向膨胀拉伸 文字连片形成亮条
cv::Mat dilateelement21 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(60,1));
cv::Mat dilate21;
dilate(binary2, dilate21, dilateelement21);
//腐蚀一次,去掉细节,表格线等。这里去掉的是竖直的线
cv::Mat erodeelement21 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(30,1));
cv::Mat erode21;
erode(dilate21, erode21, erodeelement21);
//再次膨胀,让轮廓明显一些
cv::Mat dilateelement22 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5,1));
cv::Mat dilate22;
dilate(erode21, dilate22, dilateelement22);


处理的结果图如下:


535c53ef312b9dd8a4cc1d3e11a9422f.jpg

最终的框选效果


a274f83b0bf7cffcf09cae696efb624c.jpg


其他调试结果

当然调试过程中不止用了这一张图片,毕竟结果要有一定的普适性,下面是其他几种情况下的识别结果

237b5f06330b9e15face11e07ca78ea9.jpg


b6a59853bc69026a61dc90c571b632ee.jpg


545c26876ff74105f3d614e4bc682202.jpg


相关文章
|
3月前
|
机器学习/深度学习 文字识别 前端开发
基于 Spring Boot 3.3 + OCR 实现图片转文字功能
【8月更文挑战第30天】在当今数字化信息时代,图像中的文字信息越来越重要。无论是文档扫描、名片识别,还是车辆牌照识别,OCR(Optical Character Recognition,光学字符识别)技术都发挥着关键作用。本文将围绕如何使用Spring Boot 3.3结合OCR技术,实现图片转文字的功能,分享工作学习中的技术干货。
183 2
|
3月前
|
机器学习/深度学习 人工智能 文字识别
轻松识别文字,这款Python OCR库支持超过80种语言
轻松识别文字,这款Python OCR库支持超过80种语言
|
4月前
|
文字识别
印刷文字识别使用问题之影响印刷体文字识别率包括哪些
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
4月前
|
存储 文字识别
印刷文字识别使用问题之处理超过40M的图片时,不返回结果是什么原因
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
4月前
|
人工智能 文字识别 开发工具
印刷文字识别使用问题之是否支持识别并返回文字在图片中的位置信息
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
3月前
|
数据采集 机器学习/深度学习 文字识别
OCR -- 文本检测 - 训练DB文字检测模型
OCR -- 文本检测 - 训练DB文字检测模型
64 0
|
4月前
|
文字识别 API 数据处理
印刷文字识别使用问题之对于带钢印的VIN图片如何提高识别准确率
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
4月前
|
人工智能 文字识别 Java
印刷文字识别使用问题之识别出的文字如何直接保存到Word文档中进行编辑
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
4月前
|
存储 文字识别 算法
印刷文字识别使用问题之电商图片文字识别是否支持一次调用识别多张图片
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
4月前
|
文字识别 API
印刷文字识别使用问题之怎么指定文字并返回其坐标
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。

热门文章

最新文章