基于 python 实现朴素贝叶斯分类-决策树-PCA人脸识别

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 基于 python 实现朴素贝叶斯分类-决策树-PCA人脸识别

PCA 人脸识别


结果可视化32461e792d86db2947509bc88aae5643.png
结果图


c594c9e3a293f9b27b02895270b9bbbd.png


控制台结果图


913109d45c3d538e97501d97cde52b7a.png


朴素贝叶斯分类


使用鸢尾花数据集,由于数据集是连续型数据,因此,假设各个属性是成正态分布的,采用密度函数进行概率计算。

代码写的不怎么简洁,但是把过程思路基本写出来了。


结果图


bc3e62bd33408c534ef07459debe7d7d.png

DecisionTree


决策树分类

实验环境:


  • 系统:Windows 10
  • 语言:Python3.6
  • IDE:Sublime Text3.
  • 数据集:数据集是自己创建的,详情见代码或者是图片“数据集.png”。


实验目的:

了解三种不同决策树的工作原理,使用自己创建的数据集,对数据进行分类,完成决策树的绘制。

实验过程:


学习三种决策树的工作原理,了解到三种决策树的区别如下:


ID3 算法以信息增益为准则来进行选择划分属性,选择信息增益最大的进行划分;

算法先从候选划分属性中找出信息增益高于平均水平的属性,再从中选择增益率最高的;

CART 算法使用“基尼指数”来选择划分属性,选择基尼值最小的属性作为划分属性。


实验数据集:


d009cc11f323f2afb96825d97e9a5944.png


编写代码,此次实验编程语言使用的是 python。详细算法步骤见文件 decision_tree.py 和 treePlot.py 中的注释。decision_tree.py 是用来实现属性划分的,treePlot.py 是用来实现最终决策树绘制的。


实验结果


实验结果如下:


8705cfdd441e9288169a480a81d76e19.png

ID3 决策树:


4f03f6146899668b609d995ea674a94e.png


41110ca21ac3dfecc2dd502d70b1b105.png


决策树:


ad32c74464bec529eff99f4ad5cb4b76.png


49eec23b9ff9d8d7fcf529aaff4cf5ec.png

CART 决策树:


baf97e5e1e8471ba675935bb80ee5a9e.png

d964e68c9beb24357ea47f1c15a7c9a1.png



实验结论:

由以上实验结果我们可以看到,ID3 和 C4.5 决策树的最优索引相同,所绘制出来的决策树是也是相同的,而 CART 绘制出来的决策树与前 2 种不同。


完整代码:https://download.csdn.net/download/qq_38735017/87415806

相关文章
|
4月前
|
Python
Python办公自动化:xlwings对Excel进行分类汇总
Python办公自动化:xlwings对Excel进行分类汇总
112 1
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
65 3
|
2月前
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力
|
4月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
126 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
3月前
|
安全 Python
Python脚本实现IP按段分类
【10月更文挑战第04天】
34 7
|
3月前
|
存储 Python 容器
Python 对象有哪几种,我们可以从哪些角度进行分类呢?
Python 对象有哪几种,我们可以从哪些角度进行分类呢?
25 1
|
4月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
73 2
|
4月前
|
存储 开发者 Python
从理论到实践:Python中Trie树与Suffix Tree的完美结合,开启编程新篇章!
在编程领域,高效的数据结构对于解决问题至关重要。本文通过一个案例分析,介绍如何在Python中结合使用Trie树(前缀树)和Suffix Tree(后缀树)。案例聚焦于开发具备高效拼写检查和文本相似度检测功能的文本编辑器。首先,通过构建Trie树快速检查单词是否存在;接着,利用Suffix Tree检测文本相似度。尽管Python标准库未直接提供Suffix Tree,但可通过第三方库或自定义实现。本文展示了高级数据结构在实际应用中的强大功能,并强调了理论与实践相结合的重要性。
52 1
|
4月前
|
存储 算法 Python
逆袭之路:掌握Python字典树Trie与后缀树,成为技术圈的耀眼新星!
在编程的征途上,每个人都渴望成为那个能够独当一面、解决复杂问题的技术高手。而掌握高级数据结构,如字典树(Trie)与后缀树(Suffix Tree),无疑是你逆袭路上的重要一步。这些数据结构不仅能够提升你的编码技能,还能让你在解决特定问题时游刃有余,从而在技术圈中脱颖而出,成为那颗耀眼的新星。
42 1
|
4月前
|
存储 算法 搜索推荐
Python进阶必备:字典树Trie与后缀树Suffix Array,效率提升的神器!
在Python编程中,掌握高效的数据结构对于提升程序性能至关重要。本文将深入探讨两种强大的字符串处理数据结构——字典树(Trie)与后缀数组(Suffix Array)。字典树,又称前缀树,适用于自动补全和拼写检查等功能。例如,在文本编辑器中实现自动补全时,字典树能够即时提供单词补全选项。后缀数组则用于存储字符串的所有后缀并按字典序排序,结合最长公共前缀(LCP)数组,可以高效解决许多字符串问题,如查找最长重复子串等。通过实际案例,我们将展示这两种数据结构的强大功能,帮助你在Python编程中更进一步。
77 2

热门文章

最新文章