快速入门Python机器学习(33)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 快速入门Python机器学习(33)

12.6 神经网络回归算法


12.6.1类、参数、属性和方法


class sklearn.neural_network.MLPRegressor(hidden_layer_sizes=100, activation='relu', *, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10, max_fun=15000)


参数

参数

解释

hidden_layer_sizes

tuple, length = n_layers - 2, default=(100,) ith元素表示ith隐藏层中的神经元数量。

activation

{'identity', 'logistic', 'tanh', 'relu'}, default='relu'隐藏层的激活功能。

'identity',无操作激活,用于实现线性瓶颈,返回f(x) = x

'logistic',即logistic sigmoid函数,返回f(x) = 1 / (1 + exp(-x))

'tanh',双曲tan函数,返回f(x) = tanh(x)

'relu'是已校正的线性单位函数,返回f(x) = max(0x)

solver

{'lbfgs', 'sgd', 'adam'}, default='adam'重量优化求解器。

'lbfgs'是拟牛顿方法家族中的优化器。

'sgd'指随机梯度下降。

'adam'指的是由金马、迪德里克和吉米巴提出的基于梯度的随机优化器注意:就训练时间和验证分数而言,默认解算器'adam'在相对较大的数据集(有数千个或更多的训练样本)上工作得相当好。然而,对于小数据集,'lbfgs'可以更快地收敛,性能更好。

alpha

float, default=0.0001L2惩罚(正则项)参数。


属性

属性

类别

介绍

loss_

float

用损耗函数计算的电流损耗。

best_loss_

float

求解器在整个拟合过程中达到的最小损失。

loss_curve_

list of shape (n_iter_,)

列表中的第i个元素表示第i次迭代的损失。

t_

int

拟合期间解算器看到的训练样本数。

coefs_

list of shape (n_layers - 1,)

列表中的第i个元素表示与第i层对应的权重矩阵。

intercepts_

list of shape (n_layers - 1,)

列表中的第i个元素表示对应于层i+1的偏置向量。

n_iter_

int

解算器已运行的迭代次数。

n_layers_

int

层数。

n_outputs_

int

输出数量。

out_activation_

str

输出激活函数的名称。

loss_curve_

list of shape (n_iters,)

在每个训练步骤结束时评估损失值。

t_

int

数学上等于n iters*X.shape[0],表示时间步长,由优化器的学习率调度器使用。


方法

fit(X, y)

将模型拟合到数据矩阵X和目标y

get_params([deep])

获取此估计器的参数。

predict(X)

采用多层感知器模型进行预测。

score(X, y[, sample_weight])

返回预测的确定系数R2

set_params(**params)

设置此估计器的参数。


12.6.2神经网络回归算法

def MLPRegressor_make_regression():
       warnings.filterwarnings("ignore")
       myutil = util()
       X,y = datasets.make_regression(n_samples=100,n_features=1,n_informative=2,noise=50,random_state=8)
       X_train,X_test,y_train,y_test = train_test_split(X, y, random_state=8,test_size=0.3)
       clf = MLPRegressor(max_iter=20000).fit(X,y)
       title = "MLPRegressor make_regression数据集(有噪音)"
       myutil.draw_line(X[:,0],y,clf,title)

image.png


def My_MLPRegressor(solver,hidden_layer_sizes,activation,level,alpha,mydata,title):
    warnings.filterwarnings("ignore")
    myutil = util()
    X,y = mydata.data,mydata.target
    X_train,X_test,y_train,y_test = train_test_split(X, y, random_state=8,test_size=0.3)
   clf = MLPRegressor(solver=solver,hidden_layer_sizes=hidden_layer_sizes,activation=activation,alpha=alpha,max_iter=10000).fit(X_train,y_train)
   mytitle = "MLPRegressor("+title+"):solver:"+solver+",node:"+str(hidden_layer_sizes)+",activation:"+activation+",level="+str(level)+",alpha="+str(alpha)
   myutil.print_scores(clf,X_train,y_train,X_test,y_test,mytitle)
def MLPRegressor_base():
    mydatas = [datasets.load_diabetes(), datasets.load_boston()]
    titles = ["糖尿病数据","波士顿房价数据"]
    for (mydata,title) in zip(mydatas, titles):
        ten = [10]
        hundred = [100]
        two_ten = [10,10]
        Parameters = [['lbfgs',hundred,'relu',1,0.0001], ['lbfgs',ten,'relu',1,0.0001], ['lbfgs',two_ten,'relu',2,0.0001],['lbfgs',two_ten,'tanh',2,0.0001],['lbfgs',two_ten,'tanh',2,1]]
       for Parameter in Parameters:
              My_MLPRegressor(Parameter[0],Parameter[1],Parameter[2],Parameter[3],Parameter[4],mydata,title)


输出

MLPRegressor(糖尿病数据):solver:lbfgs,node:[100],activation:relu,level=1,alpha=0.0001:
68.83%
MLPRegressor(糖尿病数据):solver:lbfgs,node:[100],activation:relu,level=1,alpha=0.0001:
28.78%
MLPRegressor(糖尿病数据):solver:lbfgs,node:[10],activation:relu,level=1,alpha=0.0001:
53.50%
MLPRegressor(糖尿病数据):solver:lbfgs,node:[10],activation:relu,level=1,alpha=0.0001:
45.41%
MLPRegressor(糖尿病数据):solver:lbfgs,node:[10, 10],activation:relu,level=2,alpha=0.0001:
68.39%
MLPRegressor(糖尿病数据):solver:lbfgs,node:[10, 10],activation:relu,level=2,alpha=0.0001:
31.62%
MLPRegressor(糖尿病数据):solver:lbfgs,node:[10, 10],activation:tanh,level=2,alpha=0.0001:
64.18%
MLPRegressor(糖尿病数据):solver:lbfgs,node:[10, 10],activation:tanh,level=2,alpha=0.0001:
31.46%
MLPRegressor(糖尿病数据):solver:lbfgs,node:[10, 10],activation:tanh,level=2,alpha=1:
-0.00%
MLPRegressor(糖尿病数据):solver:lbfgs,node:[10, 10],activation:tanh,level=2,alpha=1:
-0.01%
MLPRegressor(波士顿房价数据):solver:lbfgs,node:[100],activation:relu,level=1,alpha=0.0001:
90.04%
MLPRegressor(波士顿房价数据):solver:lbfgs,node:[100],activation:relu,level=1,alpha=0.0001:
63.90%
MLPRegressor(波士顿房价数据):solver:lbfgs,node:[10],activation:relu,level=1,alpha=0.0001:
85.23%
MLPRegressor(波士顿房价数据):solver:lbfgs,node:[10],activation:relu,level=1,alpha=0.0001:
68.49%
MLPRegressor(波士顿房价数据):solver:lbfgs,node:[10, 10],activation:relu,level=2,alpha=0.0001:
90.12%
MLPRegressor(波士顿房价数据):solver:lbfgs,node:[10, 10],activation:relu,level=2,alpha=0.0001:
63.48%
MLPRegressor(波士顿房价数据):solver:lbfgs,node:[10, 10],activation:tanh,level=2,alpha=0.0001:
18.19%
MLPRegressor(波士顿房价数据):solver:lbfgs,node:[10, 10],activation:tanh,level=2,alpha=0.0001:
18.25%
MLPRegressor(波士顿房价数据):solver:lbfgs,node:[10, 10],activation:tanh,level=2,alpha=1:
85.37%
MLPRegressor(波士顿房价数据):solver:lbfgs,node:[10, 10],activation:tanh,level=2,alpha=1:


73.75%


数据

solver

node

activation

level

alpha

训练得分

测试得分

糖尿病

lbfgs

[100]

relu

1

0.0001

68.83%

28.78%

lbfgs

[10]

relu

1

0.0001

53.50%

45.41%

lbfgs

[10,10]

relu

2

0.0001

68.39%

31.62%

lbfgs

[10,10]

tanh

2

0.0001

64.18%

31.46%

lbfgs

[10,10]

tanh

2

1

-0.00%

-0.00%

波士顿房价

lbfgs

[100]

relu

1

0.0001

90.04%

63.90%

lbfgs

[10]

relu

1

0.0001

85.23%

68.49%

lbfgs

[10,10]

relu

2

0.0001

90.12%

63.48%

lbfgs

[10,10]

tanh

2

0.0001

18.19%

18.25%

lbfgs

[10,10]

tanh

2

1

85.37%

73.75%


文末惊喜

渗透式测试环境与代码

实验代码:

链接:https://pan.baidu.com/s/14XsCng6laiSiT_anuwr5dw?pwd=78dy

提取码:78dy

环境

Windows上安装tomcat、Apache和MySQL

Linux上安装tomcat、Apache和MySQL

操作

1、把tomcat中的sec拷贝到tomcat目录下,比如%TOMCAT-HOME%\webapps\

2、把Apache中的sec拷贝到Apache目录下,比如\htdocs\

3、tomcat中的sec目录下

include.jsp

<%
String
Windows_IP="127.0.0.1";
String
Linux_IP="192.168.0.150";
String
JSP_PORT="8080";
String
PHP_PORT="8100";
%>


  • String Windows_IP:Windows的IP地址
  • String Linux_IP:Linux的IP地址
  • String JSP_PORT:JSP的端口号
  • String PHP_PORT:PHP的端口号

3、Apache中的sec目录下include.php

$windows_ip="http://127.0.0.1";
$linux_ip="http://192.168.0.150";
$jsp_port="8080";
$php_port="8100";
?>


  • $windows_ip:Windows的IP地址
  • $linux_ip=:Linux的IP地址
  • $jsp_port=:JSP的端口号
  • $php_port:PHP的端口号

打开浏览,输入http://192.168.0.106:8080/sec/

192.168.0.106为本机IP地址

数据库配置

在建立MySQL下建立sec数据库,root/123456。将DB下的4个csv文件导入sec数据库中

渗透测试操作系统虚拟机文件vmx文件

1)Windows 2000 Professional

链接:https://pan.baidu.com/s/13OSz_7H1mIpMKJMq92nEqg?pwd=upsm

提取码:upsm

2)Windows Server 2003 Standard x64 Edition

链接:https://pan.baidu.com/s/1Ro-BoTmp-1kq0W_lB9Oiww?pwd=ngsb

提取码:ngsb

开机密码:123456

3)Windows 7 x64

链接:https://pan.baidu.com/s/1-vLtP58-GXmkau0OLNoGcg?pwd=zp3o

提取码:zp3o

4)Debian 6(Kali Linux)

链接:https://pan.baidu.com/s/1Uw6SXS8z_IxdkNpLr9y0zQ?pwd=s2i5

提取码:s2i5

开机密码:jerry/123456

安装了Apatche、Tomcat、MySQL、 vsftpd并且配套Web安全测试练习教案。

启动Tomcat

#/usr/local/apache-tomcat-8.5.81/bin/startup.sh

启动MySQL

#service mysql start

启动Apache

#/etc/init.d/apache2 start

打开浏览器输入127.0.0.1:8080/sec/

5)Metasploitable2-Linux (with vsftpd 2.3.4)

链接:https://pan.baidu.com/s/1a71zOXGi_9aLrXyEnvkHwQ?pwd=17g6

提取码:17g6

开机密码:见页面提示

解压后直接为vmx文件,直接可用

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
4天前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
37 7
|
2天前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
3天前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
11天前
|
机器学习/深度学习 数据可视化 算法
Python与机器学习:使用Scikit-learn进行数据建模
本文介绍如何使用Python和Scikit-learn进行机器学习数据建模。首先,通过鸢尾花数据集演示数据准备、可视化和预处理步骤。接着,构建并评估K近邻(KNN)模型,展示超参数调优方法。最后,比较KNN、随机森林和支持向量机(SVM)等模型的性能,帮助读者掌握基础的机器学习建模技巧,并展望未来结合深度学习框架的发展方向。
40 9
Python与机器学习:使用Scikit-learn进行数据建模
|
4月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
75 0
|
10月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
286 14
|
10月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
178 1
|
10月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
10月前
|
机器学习/深度学习 数据采集 算法
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
436 0
|
10月前
|
机器学习/深度学习 数据采集 监控
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
1172 0

热门文章

最新文章