算法刷题第九天:广度优先搜索 / 深度优先搜索--3

简介: 需要额外的 dis 数组记录每个新鲜橘子被腐烂的最短时间,大小为 O(nm),且广度优先搜索中队列里存放的状态最多不会超过nm 个,最多需要 O(nm) 的空间,所以最后的空间复杂度为 O(nm)。

一,01矩阵


542. 01 矩阵 - 力扣(LeetCode)

https://leetcode.cn/problems/01-matrix/?plan=algorithms&plan_progress=gzwnnxs

c950672744c64c2d941cfb1a3af0365d.png

题解在这:


01矩阵 - 01 矩阵 - 力扣(LeetCode)

https://leetcode.cn/problems/01-matrix/solution/01ju-zhen-by-leetcode-solution/

二,腐烂的橘子


994. 腐烂的橘子 - 力扣(LeetCode)

https://leetcode.cn/problems/rotting-oranges/?plan=algorithms&plan_progress=gzwnnxs

0a0807e47c324ff3a06e677f7ff05355.png


1,多源广度优先搜索


思路


观察到对于所有的腐烂橘子,其实它们在广度优先搜索上是等价于同一层的节点的。


假设这些腐烂橘子刚开始是新鲜的,而有一个腐烂橘子(我们令其为超级源点)会在下一秒把这些橘子都变腐烂,而这个腐烂橘子刚开始在的时间是 −1 ,那么按照广度优先搜索的算法,下一分钟也就是第 0 分钟的时候,这个腐烂橘子会把它们都变成腐烂橘子,然后继续向外拓展,所以其实这些腐烂橘子是同一层的节点。那么在广度优先搜索的时候,我们将这些腐烂橘子都放进队列里进行广度优先搜索即可,最后每个新鲜橘子被腐烂的最短时间 dis[x][y] 其实是以这个超级源点的腐烂橘子为起点的广度优先搜索得到的结果。


为了确认是否所有新鲜橘子都被腐烂,可以记录一个变量 cnt 表示当前网格中的新鲜橘子数,广度优先搜索的时候如果有新鲜橘子被腐烂,则 cnt-=1 ,最后搜索结束时如果 cnt 大于 0 ,说明有新鲜橘子没被腐烂,返回 −1 ,否则返回所有新鲜橘子被腐烂的时间的最大值即可,也可以在广度优先搜索的过程中把已腐烂的新鲜橘子的值由 1 改为 2,最后看网格中是否由值为 1 即新鲜的橘子即可。


class Solution {
    int cnt;
    int dis[10][10];
    int dir_x[4]={0, 1, 0, -1};
    int dir_y[4]={1, 0, -1, 0};
public:
    int orangesRotting(vector<vector<int>>& grid) {
        queue<pair<int,int> >Q;
        memset(dis, -1, sizeof(dis));
        cnt = 0;
        int n=(int)grid.size(), m=(int)grid[0].size(), ans = 0;
        for (int i = 0; i < n; ++i){
            for (int j = 0; j < m; ++j){
                if (grid[i][j] == 2){
                    Q.push(make_pair(i, j));
                    dis[i][j] = 0;
                }
                else if (grid[i][j] == 1) cnt += 1;
            }
        }
        while (!Q.empty()){
            pair<int,int> x = Q.front();Q.pop();
            for (int i = 0; i < 4; ++i){
                int tx = x.first + dir_x[i];
                int ty = x.second + dir_y[i];
                if (tx < 0|| tx >= n || ty < 0|| ty >= m|| ~dis[tx][ty] || !grid[tx][ty]) continue;
                dis[tx][ty] = dis[x.first][x.second] + 1;
                Q.push(make_pair(tx, ty));
                if (grid[tx][ty] == 1){
                    cnt -= 1;
                    ans = dis[tx][ty];
                    if (!cnt) break;
                }
            }
        }
        return cnt ? -1 : ans;
    }
};


复杂度分析


时间复杂度:O(nm)

即进行一次广度优先搜索的时间,其中n=grid.length, m=grid[0].length 。


空间复杂度:O(nm)

需要额外的 dis 数组记录每个新鲜橘子被腐烂的最短时间,大小为 O(nm),且广度优先搜索中队列里存放的状态最多不会超过nm 个,最多需要 O(nm) 的空间,所以最后的空间复杂度为 O(nm)。

目录
相关文章
|
3月前
|
算法 测试技术 定位技术
数据结构与算法——DFS(深度优先搜索)
数据结构与算法——DFS(深度优先搜索)
|
2月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
112 23
|
7月前
|
存储 算法 C语言
【数据结构与算法 刷题系列】合并两个有序链表
【数据结构与算法 刷题系列】合并两个有序链表
|
3月前
|
数据可视化 搜索推荐 Python
Leecode 刷题笔记之可视化六大排序算法:冒泡、快速、归并、插入、选择、桶排序
这篇文章是关于LeetCode刷题笔记,主要介绍了六大排序算法(冒泡、快速、归并、插入、选择、桶排序)的Python实现及其可视化过程。
25 0
|
3月前
|
机器学习/深度学习 存储 算法
数据结构与算法——BFS(广度优先搜索)
数据结构与算法——BFS(广度优先搜索)
|
3月前
|
算法 C++
【算法解题思想】动态规划+深度优先搜索(C/C++)
【算法解题思想】动态规划+深度优先搜索(C/C++)
|
5月前
【刷题记录】最大公因数,最小公倍数(辗转相除法、欧几里得算法)
【刷题记录】最大公因数,最小公倍数(辗转相除法、欧几里得算法)
|
5月前
|
算法 Python
【Leetcode刷题Python】改进的算法,高效求一个数的因子
一个高效的Python函数用于找出一个整数的所有因子,通过仅遍历到该数平方根的范围来优化性能。
51 0
|
7月前
|
算法
【数据结构与算法 刷题系列】求带环链表的入环节点(图文详解)
【数据结构与算法 刷题系列】求带环链表的入环节点(图文详解)
|
7月前
|
算法
【数据结构与算法 刷题系列】判断链表是否有环(图文详解)
【数据结构与算法 刷题系列】判断链表是否有环(图文详解)

热门文章

最新文章