m基于功率谱,高阶累积量和BP神经网络-GRNN网络的调制方式识别仿真,对比2psk,4PSK,2FSK以及4FSK

简介: m基于功率谱,高阶累积量和BP神经网络-GRNN网络的调制方式识别仿真,对比2psk,4PSK,2FSK以及4FSK

1.算法描述

   首先区分大类的话采用的基于功率谱提取的len参数(峰值频率间隔),用峰值个数来代替,这样能很好的区分大类把MFSK和MPSK信号区分开。

针对MPSK:

一:基于瞬时参数——Char2你采用的这个是零中心非弱信号段瞬时相位非线性分量的标准偏差,这个是用来区分2PSK和4PSK的。

二:高阶累积量——针对MPSK高阶累积量的组合在高斯噪声以及多径下能较好的区分MPSK信号。

三:谱相关系数——参考文献(1)中基于谱相关的调制识别,采用谱相关系数在的最大值C可区分2PSK和4PSK。(文献1中4.3节中4.3.2的第四个特征参数)

四:循环累积量——针对MPSK循环累积量在多径下识别率较高,主要是计算量大,复杂度高的特点,区分效果和高阶累积量相同,也是具有抗多径的效果。

五:小波——参考文献(2)针对MPSK的调制识别,码元交界处有幅度不同的跳变,跳变的幅度个数表征PSK的调制阶数,这种特征提取需要进行符号速率估计!(文献2中5.1.4节PSK中的信号阶数判别)

六:M次方谱——参考文献(3),对于BPSK信号的平方谱在2倍载频处有很强的单频分量,其他的PSK信号无此特性,QPSK信号的四次方谱在2倍载频处有单频分量,所以M次方谱的单频分量的检测可以区分信号MPSK信号。

    广义回归神经网络是径向基神经网络的一种,GRNN具有很强的非线性映射能力和学习速度,比RBF具有更强的优势,网络最后普收敛于样本量集聚较多的优化回归,样本数据少时,预测效果很好,还可以处理不稳定数据。虽然GRNN看起来没有径向基精准,但实际在分类和拟合上,特别是数据精准度比较差的时候有着很大的优势。

   GRNN是RBF的一种改进,结构相似。区别就在于多了一层求和层,而去掉了隐含层与输出层的权值连接(对高斯权值的最小二乘叠加)。

image.png

1.输入层为向量,维度为m,样本个数为n,线性函数为传输函数。

2.隐藏层与输入层全连接,层内无连接,隐藏层神经元个数与样本个数相等,也就是n,传输函数为径向基函数。

3.加和层中有两个节点,第一个节点为每个隐含层节点的输出和,第二个节点为预期的结果与每个隐含层节点的加权和。

4.输出层输出是第二个节点除以第一个节点。

2.仿真效果预览
matlab2022a仿真结果如下:

2.png
3.png
4.png

3.MATLAB核心程序


clear;

close all;

warning off;

addpath 'func\'

%全局变量

parameters;

 

 

SNR0   = inf;

N0     = 50000;

 

 

y_2FSK = zeros(1,N0);

y_4FSK = zeros(1,N0);

y_2PSK = zeros(1,N0);

y_4PSK = zeros(1,N0);

 

 

%2FSK

y_2FSK = func_2FSK(N0);

%4FSK

y_4FSK = func_4FSK(N0);

%BPSK

y_2PSK = func_2PSK(N0);

%QPSK

y_4PSK = func_4PSK(N0);

 

 

%调制识别

y_2FSKn = func_add_noise(y_2FSK,SNR0);

y_4FSKn = func_add_noise(y_4FSK,SNR0);

y_2PSKn = func_add_noise(y_2PSK,SNR0);

y_4PSKn = func_add_noise(y_4PSK,SNR0);

 

 

%首先进行FSK和PSK两种模式的区分

Ns      = 2048;

%用x进行功率谱估计

[p1,f1] = func_power(y_2FSKn,Ns);

[p2,f2] = func_power(y_4FSKn,Ns);

[p3,f3] = func_power(y_2PSKn,Ns);

[p4,f4] = func_power(y_4PSKn,Ns);

 

 

 

len1 = func_fsk_psk_check(p1);

len2 = func_fsk_psk_check(p2);

len3 = func_fsk_psk_check(p3);

len4 = func_fsk_psk_check(p4);

 

 

 

 

%根据参数获得FSK和PSK区分参数

Level= (mean([len1,len2]) - mean([len3,len4]))/2;

 

%分别提取FSK和PSK的不同调制方式的特征参数

char1   = real(func_para_check(y_2FSKn,N0));

char2   = real(func_para_check(y_4FSKn,N0));

char3   = real(func_para_check(y_2PSKn,N0));

char4   = real(func_para_check(y_4PSKn,N0));

 

 

 

 

%通过GRNN神经网络进行训练

char    = [char1;char2]';

T       = [1;2]';

net_fsk = newgrnn(char,T,1.2);

 

char    = [char3;char4]';

T       = [1;2]';

net_psk = newgrnn(char,T,1.2);

 

 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%加载信号进行测试

%通过大量的循环测试,计算正确率

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

zql  = 0;

 

%运行的时候,尽量将下面的两个参数指标设置大点,这样结果才精确

MTKL  = 100;

SNRS  = [5:0.25:9,10:15];

Bers  = zeros(length(SNRS),1);

 

for jj = 1:length(SNRS)

    for i = 1:MTKL

        SNRS(jj)

        i

        s = RandStream('mt19937ar','Seed',i);

        RandStream.setGlobalStream(s);

        %长度

        N      = N0;

        %SNR

        SNR    = SNRS(jj);

        %2FSK

        y_2FSK = func_2FSK(N);

        %4FSK

        y_4FSK = func_4FSK(N);

        %BPSK

        y_2PSK = func_2PSK(N);

        %QPSK

        y_4PSK = func_4PSK(N);

 

        

        

        %设置单独的一种调制信号

        tmps   = [1,1,1,1];%2FSK

        if tmps(1) == 1

           datas = y_2FSK;

        end

        if tmps(1) == 2

           datas = y_4FSK;

        end

        if tmps(1) == 3

           datas = y_2PSK;

        end

        if tmps(1) == 4

           datas = y_4PSK;

        end

 

        datas  = func_multipath(datas);

        data   = func_add_noise(datas,SNR);

 

 

        [p,f] = func_power(data,Ns);

        len   = func_fsk_psk_check(p);

 

 

        flag  = 0;

        %首先进行FSK和PSK两种模式的区分

        if len >= Level%为FSK模式

           %根据识别参数进行调制类型的辨识

           char = real(func_para_check(data,length(data)));

           T    = round(sim(net_fsk,char'));

           if T == 1

              flag = 1;

           end

           if T == 2

              flag = 2;

           end

        else%为PSK模式

           %根据识别参数进行调制类型的辨识

           char = real(func_para_check(data,length(data)));

           T    = round(sim(net_psk,char'));

           if T == 1

              flag = 3;

           end

           if T == 2

              flag = 4;

           end

        end

        if flag == tmps(1)

           zql = zql + 1;

        end

    end

 

    %识别正确率

    Bers(jj) = zql/MTKL;

    zql      = 0;

end

 

 

R = 100*mean(Bers,2);

01-126m
相关文章
|
18天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
8天前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
42 18
|
14天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
75 17
|
1月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
59 10
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
66 10
|
1月前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
1月前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
|
1月前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们日常生活中不可或缺的一部分。本文将深入探讨网络安全漏洞、加密技术和安全意识等方面的问题,并提供一些实用的建议和解决方案。我们将通过分析网络攻击的常见形式,揭示网络安全的脆弱性,并介绍如何利用加密技术来保护数据。此外,我们还将强调提高个人和企业的安全意识的重要性,以应对日益复杂的网络威胁。无论你是普通用户还是IT专业人士,这篇文章都将为你提供有价值的见解和指导。