m基于FPGA的MSK调制解调系统verilog开发,并带FPGA误码检测模块和matlab仿真程序

简介: m基于FPGA的MSK调制解调系统verilog开发,并带FPGA误码检测模块和matlab仿真程序

1.算法描述
整个模型的基本框图为

1.jpeg
2.jpeg

软件无线电是现代通信技术的重要研究领域和发展方向,目前发展迅速.快速发展的软件无线电技术与落后的硬件计算资源之间的矛盾越来越突出.为了缓解这个矛盾,一方面可以加快集成电路的研发进度,提升硬件的计算性能;另一方面可以对信号处理的算法进行深入的改进研究,降低算法的运算量,在现有的硬件水平下提出符合实际的解决方案.在信号处理的各种算法中,调制解调算法的地位十分重要.尤其是其中的解调算法,其复杂度已被作为衡量整个信号处理系统工作性能的有效指标. 本文的研究对象是恒定包络连续相位调制技术中的最小频移键控(MSK).这种调制方式具有恒定包络,相位连续,功率谱密度较集中,频带利用率高等特点.MSK信号的诸多优点使得它在信号理论研究和应用中具有重要意义.

 MSK信号是一种相位连续、包络恒定并且占用带宽最小的二进制正交FSK信号。它的第k个码元可以表示为:

image.png

   MSK信号具有特点如下:①MSK信号是正交信号;②其波形在码元间是连续的;③其包络是恒定不变的;④其附加相位在一个码元持续时间内线性地变化2/;⑤调制产生的频率偏移等于T4/1Hz;⑥在一个码元持续时间内含有的载波周期数等于1/4的整数倍。这里,我们考虑到硬件平台的高度可移植性,我们采用了无核化设计,就是全部使用verilog进行设计,下面首先说明一下系统的各个管脚。

image.png

时钟,接板子的晶振。

系统复位,高电平复位清0,你接板子上任意一个开关即可。

数据发送端数据,有符号,你接起高位即可,示波器看

MSK符号,多维有符号数,需要使用chipscope在线看

MSK符号,多维有符号数,需要使用chipscope在线看

MSK调制,多维有符号数,需要使用chipscope在线看

MSK调制,多维有符号数,需要使用chipscope在线看

调制端最后输出的中频信号

接收端解调信号

接收端解调信号

低通滤波信号

低通滤波信号

MSK差分解调信号

最后的数据

误码数

总比特数(两个相除就是误码率)

2.仿真效果预览
matlab2022a仿真结果如下:

5.png
6.png
7.png
8.png
9.png

3.Verilog核心程序

 
module tops(
           i_clk,
              i_rst,
              //Trans
              o_Trans_data_samples,
              o_Msk_I_samples,
              o_Msk_Q_samples,
              o_msk_cos,
              o_msk_sin,
              o_msk_R,
              o_msk_Rn,
              //Rec
              o_msk_cos_rec,
              o_msk_sin_rec,
              o_msk_filter_recI,
              o_msk_filter_recQ,
           o_data,
           o_bit,
           o_error_num,
              o_total_num
            );
 
input              i_clk;
input              i_rst;
//Trans
output signed[1:0] o_Trans_data_samples;
output signed[9:0] o_Msk_I_samples;
output signed[9:0] o_Msk_Q_samples;              
output signed[15:0]o_msk_cos;
output signed[15:0]o_msk_sin;                      
output signed[15:0]o_msk_R;
output signed[15:0]o_msk_Rn;
//Rec
output signed[15:0]o_msk_cos_rec;
output signed[15:0]o_msk_sin_rec;    
output signed[15:0]o_msk_filter_recI;
output signed[15:0]o_msk_filter_recQ;
output signed[31:0]o_data;
output signed[1:0] o_bit;
 
output signed[31:0]o_error_num;
output signed[31:0]o_total_num;
 
 
//Trans
 
//output  o_clk_4M;         //100M ~ 4M  , 25   times
//output  o_clk_1600K;      //100M ~ 0.8M, 125  times
//output  o_clk_200K;    //100M ~ 0.1M, 1000  times    
wire clk200;
wire clk_4M;
Msk_mod Msk_mod_u(
    .i_clk               (i_clk), 
    .i_rst               (~i_rst), 
    .o_clk_4M            (clk_4M), 
    .o_clk_1600K         (), 
    .o_clk_200K          (clk200), 
    .o_Trans_data        (), 
    .o_Trans_data_samples(o_Trans_data_samples), 
    .o_Msk_I             (), 
    .o_Msk_Q             (), 
    .o_Msk_I_samples     (o_Msk_I_samples), 
    .o_Msk_Q_samples     (o_Msk_Q_samples), 
    .o_cos               (), 
    .o_sin               (), 
    .o_msk_cos           (o_msk_cos), 
    .o_msk_sin           (o_msk_sin), 
    .o_msk_R             (o_msk_R)
    );
 
awgns awgns_u(
    .i_clk(clk_4M), 
    .i_rst(~i_rst), 
    .i_power(16'd100), 
    .i_din(o_msk_R), 
    .o_dout(o_msk_Rn)
    );
//Rec
Msk_demod Msk_demod_u(
    .i_clk            (i_clk), 
    .i_rst            (~i_rst), 
    .i_msk_R          (o_msk_Rn), 
    .o_msk_cos_rec    (o_msk_cos_rec), 
    .o_msk_sin_rec    (o_msk_sin_rec), 
    .o_msk_filter_recI(o_msk_filter_recI), 
    .o_msk_filter_recQ(o_msk_filter_recQ), 
    .o_data           (o_data), 
    .o_bit            (o_bit)
    );
 
//error calculate
Error_Chech Error_Chech_u(
    .i_clk(clk200), 
    .i_rst(~i_rst), 
    .i_trans(o_Trans_data_samples), 
    .i_rec(o_bit), 
    .o_error_num(o_error_num), 
    .o_total_num(o_total_num)
    );
endmodule
01_117m
相关文章
|
4天前
|
机器学习/深度学习 算法 计算机视觉
基于深度学习网络的USB摄像头实时视频采集与人脸检测matlab仿真
**摘要 (Markdown格式):** ```markdown - 📹 使用USB摄像头(Tttttttttttttt666)实时视频检测,展示基于YOLOv2在MATLAB2022a的实施效果: ``` Tttttttttttttt1111111111------------5555555555 ``` - 📺 程序核心利用MATLAB视频采集配置及工具箱(Dddddddddddddd),实现图像采集与人脸定位。 - 🧠 YOLOv2算法概览:通过S×S网格预测边界框(B个/网格),含坐标、类别概率和置信度,高效检测人脸。
|
11天前
|
机器学习/深度学习 算法 固态存储
m基于深度学习的卫星遥感图像轮船检测系统matlab仿真,带GUI操作界面
在MATLAB 2022a中,使用GoogLeNet对卫星遥感图像进行轮船检测,展示了高效的目标识别。GoogLeNet的Inception架构结合全局平均池化增强模型泛化性。核心代码将图像切块并分类,预测为轮船的部分被突出显示,体现了深度学习在复杂场景检测中的应用。
49 8
|
5天前
|
算法 计算机视觉 异构计算
基于FPGA的图像一维FFT变换IFFT逆变换verilog实现,包含tb测试文件和MATLAB辅助验证
```markdown ## FPGA 仿真与 MATLAB 显示 - 图像处理的 FFT/IFFT FPGA 实现在 Vivado 2019.2 中仿真,结果通过 MATLAB 2022a 展示 - 核心代码片段:`Ddddddddddddddd` - 理论:FPGA 实现的一维 FFT/IFFT,加速数字信号处理,适用于高计算需求的图像应用,如压缩、滤波和识别 ```
|
12天前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的64QAM解调算法matlab性能仿真
**算法预览图省略** MATLAB 2022A版中,运用BP神经网络进行64QAM解调。64QAM通过6比特映射至64复数符号,提高数据速率。BP网络作为非线性解调器,学习失真信号到比特的映射,对抗信道噪声和多径效应。网络在处理非线性失真和复杂情况时展现高适应性和鲁棒性。核心代码部分未显示。
|
23天前
|
存储 算法 计算机视觉
m基于FPGA的FIR低通滤波器实现和FPGA频谱分析,包含testbench和滤波器系数MATLAB计算程序
在Vivado 2019.2平台上开发的系统,展示了数字低通滤波器和频谱分析的FPGA实现。仿真结果显示滤波效果良好,与MATLAB仿真结果一致。设计基于FPGA的FIR滤波器,利用并行处理和流水线技术提高效率。频谱分析通过离散傅里叶变换实现。提供了Verilog核心程序以示例模块工作原理。
20 4
|
14天前
|
机器学习/深度学习 算法 语音技术
基于语音信号MFCC特征提取和GRNN神经网络的人员身份检测算法matlab仿真
**语音识别算法概览** MATLAB2022a中实现,结合MFCC与GRNN技术进行说话人身份检测。MFCC利用人耳感知特性提取语音频谱特征,GRNN作为非线性映射工具,擅长序列学习,确保高效识别。预加重、分帧、加窗、FFT、滤波器组、IDCT构成MFCC步骤,GRNN以其快速学习与鲁棒性处理不稳定数据。适用于多种领域。
|
15天前
|
机器学习/深度学习 算法 计算机视觉
基于ADAS的车道线检测算法matlab仿真
**摘要:** 基于ADAS的车道线检测算法利用Hough变换和边缘检测在视频中识别车道线,判断车道弯曲情况,提供行驶方向信息,并高亮显示。在MATLAB2022a中实现,系统包括图像预处理(灰度化、滤波、边缘检测)、车道线特征提取(霍夫变换、曲线拟合)和车道线跟踪,确保在实时场景中的准确性和稳定性。预处理通过灰度转换减少光照影响,滤波去除噪声,Canny算法检测边缘。霍夫变换用于直线检测,曲线拟合适应弯道,跟踪则增强连续帧的车道线检测。
|
22天前
|
机器学习/深度学习 监控 算法
基于yolov2深度学习网络的昆虫检测算法matlab仿真,并输出昆虫数量和大小判决
YOLOv2算法应用于昆虫检测,提供实时高效的方法识别和定位图像中的昆虫,提升检测精度。核心是统一检测网络,预测边界框和类别概率。通过预测框尺寸估算昆虫大小,适用于农业监控、生态研究等领域。在matlab2022A上运行,经过关键升级,如采用更优网络结构和损失函数,保证速度与精度。持续优化可增强对不同昆虫的检测能力。![image.png](https://ucc.alicdn.com/pic/developer-ecology/3tnl7rfrqv6tw_e760ff6682a3420cb4e24d1e48b10a2e.png)
|
13天前
|
传感器 算法
ANC主动降噪理论及Matlab代码实现
ANC主动降噪理论及Matlab代码实现
|
2月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章